首页 > 编程语言 >深入 Python 数据分析:高级技术与实战应用

深入 Python 数据分析:高级技术与实战应用

时间:2024-10-04 21:35:40浏览次数:6  
标签:数据分析 实战 plt Python pd import data

一、引言

 

Python 作为一种强大的编程语言,在数据分析领域中发挥着重要作用。本文将带领读者深入探索 Python 数据分析的高级技术,通过实际案例和代码示例,帮助读者提升数据分析能力和解决实际问题的能力。

 

二、数据读取与预处理

 

  1. 使用 pandas 库读取各种数据格式(如 CSV、Excel、SQL 等)

import pandas as pd

# 读取 CSV 文件
data = pd.read_csv('data.csv')

# 读取 Excel 文件
data = pd.read_excel('data.xlsx')

# 从 SQL 数据库中读取数据
import sqlite3
conn = sqlite3.connect('database.db')
data = pd.read_sql_query('SELECT * FROM table_name', conn)
conn.close()
  1. 数据清洗与预处理,包括处理缺失值、异常值和重复值

# 处理缺失值
data.fillna(value=0, inplace=True)  # 用 0 填充缺失值

# 处理异常值
data = data[(data['column_name'] > lower_bound) & (data['column_name'] < upper_bound)]

# 处理重复值
data.drop_duplicates(inplace=True)
三、数据探索与可视化

 

  1. 使用 matplotlib 和 seaborn 库进行数据可视化

import matplotlib.pyplot as plt
import seaborn as sns

# 绘制柱状图
sns.barplot(x='category', y='value', data=data)
plt.show()

# 绘制折线图
plt.plot(data['x'], data['y'])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

# 绘制箱线图
sns.boxplot(x='category', y='value', data=data)
plt.show()
  1. 数据探索性分析,包括计算统计量、相关性分析等

四、高级数据分析技术

 

  1. 聚类分析

from sklearn.cluster import KMeans

# 假设数据为 X
kmeans = KMeans(n_clusters=3)  # 设置聚类数为 3
kmeans.fit(X)

# 获取聚类标签
labels = kmeans.labels_
  1. 主成分分析(PCA)

from sklearn.decomposition import PCA

# 假设数据为 X
pca = PCA(n_components=2)  # 设置主成分数为 2
X_pca = pca.fit_transform(X)
  1. 时间序列分析

import pandas as pd
import statsmodels.api as sm

# 读取时间序列数据
data = pd.read_csv('time_series_data.csv', index_col='date', parse_dates=True)

# 平稳性检验
from statsmodels.tsa.stattools import adfuller
result = adfuller(data['value'])
if result[1] <= 0.05:
    print("数据是平稳的")
else:
    print("数据是非平稳的,需要进行差分处理")

# 建模与预测
model = sm.tsa.ARIMA(data['value'], order=(1, 1, 1))
results = model.fit()
forecast = results.forecast(steps=5)  # 预测未来 5 个时间点的值
五、实战案例

 

通过一个实际的数据分析项目,综合运用上述技术,解决实际问题。例如,对销售数据进行分析,预测未来销售趋势,找出影响销售的关键因素等。

 本文代码部分转自:https://www.wodianping.com/app/2024-10/37519.html

六、总结

 

本文介绍了 Python 数据分析的高级技术,包括数据读取与预处理、数据探索与可视化、高级数据分析技术和实战案例。通过学习这些内容,读者可以提升自己的数据分析能力,更好地应对实际工作中的数据分析任务。

标签:数据分析,实战,plt,Python,pd,import,data
From: https://www.cnblogs.com/wodianpingcom/p/18447312

相关文章

  • 书生大模型实战:入门
    第1关Linux基础知识闯关任务完成SSH连接与端口映射并运行hello_world.py第2关Python基础知识闯关任务Python实现wordcount闯关任务Vscode连接InternStudiodebug笔记第3关Git介绍1.破冰活动:自我介绍PR链接:https://github.com/InternLM/Tutorial/pul......
  • 深入探索 Python 爬虫:高级技术与实战应用
    一、引言 Python爬虫是一种强大的数据采集工具,它可以帮助我们从互联网上自动获取大量有价值的信息。在这篇文章中,我们将深入探讨Python爬虫的高级技术,包括并发处理、反爬虫策略应对、数据存储与处理等方面。通过实际的代码示例和详细的解释,读者将能够掌握更高级的爬虫技巧,提......
  • Python进程池:提升你的并发性能
    引言在现代编程中,多核处理器的普及使得并发编程变得尤为重要。Python,作为一种广泛使用的编程语言,提供了多种并发和并行编程的工具。其中,multiprocessing库中的进程池(Pool)是一个强大的工具,它可以帮助我们有效地利用多核处理器,提高程序的执行效率。本文将带你深入了解进程池的使用,从......
  • (开题)flask框架基于Web的工艺品展示系统的设计与实现(程序+论文+python)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展,电子商务和在线展示平台已成为各行业推广和销售产品的重要手段。工艺品作为富含文化底蕴和艺术价值的产品,其传统......
  • (开题)flask框架基于Web的高校学生竞赛成果管理系统65y7o(程序+论文+python)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景在当今教育体系中,高校学生竞赛作为培养学生实践能力、创新思维和团队协作精神的重要途径,其重要性日益凸显。然而,随着竞赛种类和数量的不断......
  • Python常见面试题(100道)
        面试总是让人倍感压力,尤其是在技术领域,准备充分非常关键。为了帮助你更好地应对Python面试,我精心整理了100道经典的Python面试题,并附上详细答案和解析。这些问题涵盖了基础知识、实用技巧和常见难点,旨在提升你的面试能力,让你自信面对挑战。快来领取这份资源,助你顺......
  • python相平面 图形
    二阶非线性自治系统绘制相平面图。假设我们有一个简单的阻尼摆系统,其状态方程可以表示为:\[dx1/dt=x2\\dx2/dt=-cx2-gsin(x1)\]importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.integrateimportodeint#定义系统的状态方程defpendul......
  • python 画向量图
    start_points和end_points数组分别表示向量的起点和终点。使用plt.quiver函数绘制向量(箭头)。plt.scatter用于绘制起点和终点(可选)。plt.legend添加图例。plt.title、plt.xlabel和plt.ylabel添加标题和轴标签。plt.grid(True)显示网格。plt.show()显示图像。im......
  • Python 高级编程:深入探索高级代码实践
    在Python编程的世界中,掌握高级概念和技术是提升编程能力的关键。本文将带领您深入探索Python的高级特性,通过实际的代码示例展示其强大之处。 1.装饰器(Decorators)装饰器是Python中非常强大的特性,它可以在不修改函数源代码的情况下,为函数添加额外的功能。以下是一个简单......
  • 【py】python实现矩阵的加、减、点乘、乘法
    好的,我将使用Python语言来解决这个问题。我们将使用NumPy库来创建数组和进行矩阵运算。以下是完整的代码:importnumpyasnp#(1)创建一个3x4的二维数组test1,数据值要求从0~1之间test1=np.random.rand(3,4)#(2)创建12个服从均匀分布的随机数,尺寸为3x4的二维数组t......