首页 > 编程语言 >3D高斯渲染 (1-3)ros下 接受c++节点发送的位姿,python节点渲染图像返回,同步版本

3D高斯渲染 (1-3)ros下 接受c++节点发送的位姿,python节点渲染图像返回,同步版本

时间:2024-09-18 15:39:28浏览次数:16  
标签:img 渲染 image pose np msg theta 位姿 节点

基础学习

3D高斯渲染 (1-2)ros下 接受c++节点发送的位姿,python节点渲染图像返回

https://www.cnblogs.com/gooutlook/p/18385485

ros 自定义消息(图像+标志位+位姿)python和c++发布和接受

https://www.cnblogs.com/gooutlook/p/18412553

 

本工程代码

为什么要做这个,因为之前的版本 图像和位姿是分开两个话题发送的,然后接收端依靠时间戳同步,但是可能会导致数据对齐且写代码复杂问题,这里直接自定义一个复合数据,图像和位姿以及id全部封装一起一起发。

 编译

 

 

 执行脚本

#!/bin/bash

#外部给与执行权限
#sudo chmod +x run_ros_nodes.sh
# conda activate gaussian_splatting

WORKSPACE_DIR="/home/r9000k/v2_project/gaosi_slam/ros/ros_cgg" # 修改1-1 自己创建的ros节点工程catkin_make根目录
python_DIR="/home/r9000k/v2_project/gaosi_slam/ros/ros_cgg/src/gaosi_img_pose_flag/src" # 修改1-2 自己创建的python脚本位置

data_dir="/home/r9000k/v2_project/data/NWPU"
config_DIR="/home/dongdong/2project/0data/NWPU/FHY_config/GNSS_config.yaml" # 修改1-3 数据集

conda_envs="/home/r9000k/anaconda3" # 修改2-1 自己的conda 安装路径
# ROS_cv_briage_dir = "/home/r9000k/v1_software/opencv/catkin_ws_cv_bridge/devel/setup.bash" # 修改2-2 自己编译的cv_briage包节点,貌似不用也行 制定了依赖opencv3.4.9 而非自带4.2
# echo $ROS_cv_briage_dir
conda_envs_int=$conda_envs"/etc/profile.d/conda.sh" # 不用改 conda自带初始化文件
echo $conda_envs_int
conda_envs_bin=$conda_envs"/envs/gaussian_splatting/bin" # 不用改 conda自带python安装位置 脚本中需要指定是conda特定的环境python而不是系统默认的
echo $conda_envs_bin
ROS_SETUP="/opt/ros/noetic/setup.bash" #不用改  安装时候添加到系统路径了 不需要每次都source 这里留着
#指定目录

# 启动 ROS Master 不用改
echo "Starting ROS 总结点..."
gnome-terminal -- bash -c "\
cd $WORKSPACE_DIR; source devel/setup.bash; \  
roscore; \
exec bash"

# 等待 ROS Master 启动
sleep 3

echo "Running C++ 订阅节点..."
gnome-terminal -- bash -c "\
cd $WORKSPACE_DIR; source devel/setup.bash; \
rosrun gaosi_img_pose_flag image_pose_flag_subscriber; \
exec bash"


# source /home/r9000k/v2_project/gaosi_slam/ros/ros_cgg/devel/setup.bash 
# 运行 python 渲染图节点
# source conda_envs_int 和 source ROS_cv_briage_dir 非必要,但是考虑到脚本经常因为系统环境默认变量找不到导致的路径问题,这里还是强制给了也便于学习了解执行流程。
echo "Running python 订阅节点..."
echo "1 激活conda本身(脚本执行需要) 2 激活conda环境  3运行python 节点 并跟上输入参数[训练模型保存根目录,指定要使用的模型训练次数,要测试的模型精度模式]"
gnome-terminal -- bash -c "\
source $conda_envs_int; \ 
cd $WORKSPACE_DIR; source devel/setup.bash; \
conda activate gaussian_splatting ; \
cd $python_DIR; \
python3 v1_image_pose_subscriber.py \
-m $data_dir/gs_out/train1_out_sh0_num30000 \
--iteration 30000 \
--models baseline ;\
exec bash"

  

执行

 

 

 

 

 创建消息

 

PoseImgFlagMsg.msg 

# PoseImgFlagMsg.msg
std_msgs/Time timestamp
sensor_msgs/Image image
std_msgs/Float64 flag
geometry_msgs/Pose pose

  

std_msgs/Time timestamp   时间戳
sensor_msgs/Image image   图像
std_msgs/Float64 flag     请求的id, 某次请求渲染,可能要多张渲染图,同属于一个批次。
geometry_msgs/Pose pose   图像位姿





编译

 CMakeLists.txt

1 工程名字 gaosi_img_pose_flag

cmake_minimum_required(VERSION 3.0.2)
project(gaosi_img_pose_flag)

find_package(catkin REQUIRED COMPONENTS
  roscpp
  geometry_msgs
  sensor_msgs
  cv_bridge
  message_filters # 消息同步
  image_transport
  std_msgs # 自定义消息
  message_generation # 自定义消息
)

# 自定义消息
add_message_files(
  FILES
  PoseImgFlagMsg.msg
)

# 自定义消息
generate_messages(
  DEPENDENCIES
  std_msgs
  sensor_msgs
  geometry_msgs
)

find_package(OpenCV REQUIRED)
find_package(Boost REQUIRED COMPONENTS filesystem)
find_package(Eigen3 REQUIRED)

catkin_package(
  CATKIN_DEPENDS roscpp geometry_msgs sensor_msgs cv_bridge std_msgs message_runtime
  DEPENDS Boost
)

include_directories(
  ${catkin_INCLUDE_DIRS}
  ${OpenCV_INCLUDE_DIRS}
  ${Boost_INCLUDE_DIRS}
  "/usr/local/include/eigen3"
)



# # 编译发布节点
# add_executable(image_pose_flag_publisher src/image_pose_flag_publisher.cpp)
# # 自定义消息引用
# add_dependencies(image_pose_flag_publisher ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
# target_link_libraries(image_pose_flag_publisher
#   ${catkin_LIBRARIES}
#   ${OpenCV_LIBRARIES}
#   ${Boost_LIBRARIES}
# )

add_executable(image_pose_flag_subscriber src/image_pose_flag_subscriber.cpp)
add_dependencies(image_pose_flag_subscriber ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
target_link_libraries(image_pose_flag_subscriber ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})

  

 ros包名字 未来调用需要用到

 <name>gaosi_img_pose_flag</name>
<?xml version="1.0"?>
<package format="2">
  <name>gaosi_img_pose_flag</name>
  <version>0.0.1</version>
  <description>
    A package to publish and subscribe to images and GPS data using ROS.
  </description>

  <!-- Maintainer of the package -->
  <maintainer email="your_email@example.com">Your Name</maintainer>

  <!-- License of the package -->
  <license>MIT</license>

  <!-- Build tool required to build this package -->
  <buildtool_depend>catkin</buildtool_depend>

  <!-- Dependencies of the package during build and runtime -->
  <build_depend>roscpp</build_depend>
  <build_depend>sensor_msgs</build_depend>
  <build_depend>cv_bridge</build_depend>
  <build_depend>eigen</build_depend>
  <build_depend>geometry_msgs</build_depend>
  <build_depend>message_filters</build_depend>
  <build_depend>image_transport</build_depend>
  <!--自定义消息 -->
  <build_depend>message_generation</build_depend>
  <build_depend>message_runtime</build_depend>
  <build_depend>std_msgs</build_depend>
  
  
  <exec_depend>roscpp</exec_depend>
  <exec_depend>sensor_msgs</exec_depend>
  <exec_depend>cv_bridge</exec_depend>
  <exec_depend>eigen</exec_depend>
  <exec_depend>geometry_msgs</exec_depend>
  <exec_depend>message_filters</exec_depend>
  <exec_depend>image_transport</exec_depend>
  <!--自定义消息 -->
  <exec_depend>message_generation</exec_depend>
  <exec_depend>message_runtime</exec_depend>
  <exec_depend>std_msgs</exec_depend>

  <!-- Declare additional dependencies required for building this package -->
  <build_export_depend>roscpp</build_export_depend>
  <build_export_depend>sensor_msgs</build_export_depend>
  <build_export_depend>cv_bridge</build_export_depend>
  <build_export_depend>eigen</build_export_depend>
  <build_export_depend>geometry_msgs</build_export_depend>
  <build_export_depend>message_filters</build_export_depend>
  <build_export_depend>image_transport</build_export_depend>
    <!--自定义消息 -->
  <build_export_depend>message_generation</build_export_depend>
  <build_export_depend>message_runtime</build_export_depend>
  <build_export_depend>std_msgs</build_export_depend>

  <!-- Export information, can be used by other packages -->
  <export>
    <!-- Export any specific information here -->
  </export>
</package>

  

 

 c++ 发送位姿,获取渲染图

 image_pose_flag_subscriber.cpp

#include <ros/ros.h>
#include <ros/time.h>
#include <std_msgs/Time.h>

#include <queue>
#include <mutex>
#include <thread>
#include <iostream>

#include <sensor_msgs/Image.h>
#include <std_msgs/Float64.h>
#include <geometry_msgs/Pose.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/opencv.hpp>
#include <gaosi_img_pose_flag/PoseImgFlagMsg.h> // 更换为你包的名字

#include <Eigen/Dense>
#include <Eigen/Geometry> // For Quaterniond
 




// Global variables
std::queue<gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr> data_queue;
std::mutex queue_mutex;

// 用于过于早位姿的节点
Eigen::Quaterniond Q_c2w ;
Eigen::Vector3d t_c2w;



void publishPose(ros::Publisher& pose_pub, std_msgs::Float64 flag_,Eigen::Quaterniond &quat, Eigen::Vector3d &t)
{
    
    cv::Mat image_;
    //std_msgs::Float64 flag_;
    geometry_msgs::Pose pose_msg;

    pose_msg.position.x = t[0]; // 示例位置
    pose_msg.position.y = t[1];
    pose_msg.position.z = t[2];
    pose_msg.orientation.x = quat.x(); // 示例姿态
    pose_msg.orientation.y = quat.y();
    pose_msg.orientation.z = quat.z();
    pose_msg.orientation.w = quat.w();
 
 
 
    ROS_INFO("send Pose - x: %f, y: %f, z: %f",
                pose_msg.position.x,
                pose_msg.position.y,
                pose_msg.position.z);


    gaosi_img_pose_flag::PoseImgFlagMsg pose_img_flag_msg;
    //pose_msg.image = *cv_bridge::CvImage(std_msgs::Header(), "bgr8", image_).toImageMsg();
    pose_img_flag_msg.flag = flag_;
    pose_img_flag_msg.pose = pose_msg;

    // 设置当前时间戳
    ros::Time current_time = ros::Time::now();
    pose_img_flag_msg.timestamp = std_msgs::Time(); // 初始化时间戳
    pose_img_flag_msg.timestamp.data = current_time; // 设置当前时间


    // 发布PoseStamped消息
    pose_pub.publish(pose_img_flag_msg);
}



// Callback function to handle incoming messages
void render_callback(const gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr& msg)
{
    std::lock_guard<std::mutex> lock(queue_mutex);
    data_queue.push(msg);
}

// Thread function to process the queue
void processQueue()
{
    while (ros::ok())
    {
        std::queue<gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr> local_queue;

        {
            std::lock_guard<std::mutex> lock(queue_mutex);
            std::swap(local_queue, data_queue); // Safely access the queue
        }

        while (!local_queue.empty())
        {
            auto msg = local_queue.front();
            local_queue.pop();

          
            // 将ROS图像消息转换为OpenCV图像
            cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg->image, sensor_msgs::image_encodings::BGR8);
            cv::imshow("Rec_Image", cv_ptr->image);
            cv::waitKey(1); 
            
            // Process the message
            ROS_INFO("Processing flag: %.2f", msg->flag.data);
            ROS_INFO("Processing pose: Position(%.2f, %.2f, %.2f), Orientation(%.2f, %.2f, %.2f, %.2f)",
                     msg->pose.position.x, msg->pose.position.y, msg->pose.position.z,
                     msg->pose.orientation.x, msg->pose.orientation.y, msg->pose.orientation.z, msg->pose.orientation.w);
        }

        // Optional: Sleep to avoid busy waiting
        std::this_thread::sleep_for(std::chrono::milliseconds(100));
    }
}

void spinThread()
{
    ros::spin();// 处理回调函数积累消息
}


int main(int argc, char** argv)
{
    ros::init(argc, argv, "image_pose_processor");
    ros::NodeHandle nh;

    ros::Subscriber sub;
    ros::Publisher pose_pub;

    // Initialize the subscriber
    sub = nh.subscribe("render/image_pose_topic", 10, render_callback);
    pose_pub = nh.advertise<gaosi_img_pose_flag::PoseImgFlagMsg>("slam/image_pose_topic", 10);

    // Start a thread to run ros::spin()
    std::thread spin_thread(spinThread); // 处理rospin的线程

    // Create a thread to process the queue
    std::thread processing_thread(processQueue); // 处理接受消息的线程


    Q_c2w = Eigen::Quaterniond::Identity();;
    t_c2w={0,0,0.1};
    std::string control_mode="auto";// 自动 auto  手动 hand
 


    ros::Rate rate(1);// Hz 频率


    if(control_mode=="auto"){
        // 定时器每秒调用一次
        ros::Rate rate(1);
        double i =0;
        while (ros::ok())
        {  
            i=i+0.1;
            if(i>3)i=0;

            t_c2w={i,0,i};
            std_msgs::Float64 Msg_id; // 创建 Float64 消息
            Msg_id.data = i;// 将 double 值赋给消息的 data 成员
        
            // todo 从slam获取想要的位姿
            publishPose(pose_pub,Msg_id,Q_c2w,t_c2w);
            

            rate.sleep();
        }
    }



    
    // Join the processing thread before exiting
    if (processing_thread.joinable())
    {
        processing_thread.join();
    }

    // Join the spin thread before exiting
    if (spin_thread.joinable())
    {
        spin_thread.join();
    }




    return 0;
}

  

python接受位姿消息,渲染图像,返回图像,且可以手动漫游地图给与渲染图

 

v1_image_pose_subscriber.py

# sudo apt-get install python3-rosdep python3-rosinstall python3-rospkg
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image as ImageMsg
from geometry_msgs.msg import PoseStamped,Pose
from cv_bridge import CvBridge, CvBridgeError
from collections import deque

from sensor_msgs.msg import Image
from std_msgs.msg import Float64
from geometry_msgs.msg import Pose
from gaosi_img_pose_flag.msg import PoseImgFlagMsg  # 更换为你包的名字

import std_msgs.msg

# import sys
# directory = '/home/dongdong/2project/2_3DGaosi/reduced-3dgs/'
# sys.path.append(directory)

from API_render import *


pose_queue = deque()  # Queue to store pose messages with timestamps
bridge = CvBridge()

def pose_callback(msg):
    # Store the pose message with timestamp in the queue
    pose_queue.append((msg.timestamp, msg))
    #print("收到位姿  x", msg.pose.position.x, "y", msg.pose.position.y, "z", msg.pose.position.z)

    # try:
    #     # Convert ROS image message to OpenCV image
    #     cv_image = bridge.imgmsg_to_cv2(msg.image, desired_encoding="bgr8")
    #     cv2.imshow("Received Image", cv_image)
    #     cv2.waitKey(1)
    # except Exception as e:
    #     rospy.logerr("Failed to convert image: %s", str(e))

    # rospy.loginfo("Received flag: %.2f", msg.flag.data)
    # rospy.loginfo("Received pose: Position(%.2f, %.2f, %.2f), Orientation(%.2f, %.2f, %.2f, %.2f)",
    #                 msg.pose.position.x, msg.pose.position.y, msg.pose.position.z,
    #                 msg.pose.orientation.x, msg.pose.orientation.y, msg.pose.orientation.z, msg.pose.orientation.w)




# 继承模式  直接使用而非拷贝
def publish_image_with_pose_gaosi(dataset : ModelParams,
                iteration : int,
                pipeline : PipelineParams,
                ):
   

    # ============  3d 初始化 =================
    with torch.no_grad():# 丢不更新 防止高斯模型数据修改

        print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path)
        print("dataset._source_path 原始输入SFM数据路径",dataset.source_path)
        print("dataset.sh_degree 球谐系数",dataset.sh_degree)
        print("dataset.white_background 是否白色背景",dataset.sh_degree)

        cam_info = Read_caminfo_from_colmap(dataset.source_path)
        
        height, width = cam_info["height"], cam_info["width"]   
        Fovx,Fovy = cam_info["FovX"], cam_info["FovY"]   
        
        img_opencv =  np.ones((height, width, 3), dtype=np.uint8) * 0
        cv2.namedWindow('python_Node_Rendering_Img', cv2.WINDOW_NORMAL)

       # 加载渲染器
        gaussians = GaussianModel(dataset.sh_degree)

        bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
        background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
          
        # 加载什么精度模型
        model = args.models
        print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model)
        name = models_configuration[model]['name']
        quantised = models_configuration[model]['quantised']
        half_float = models_configuration[model]['half_float']
        try:
            # 选择什么训练次数模型
            model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/"
            model_path=os.path.join(model_path,name)
            print("渲染实际加载的训练模型",model_path)
            gaussians.load_ply(model_path, quantised=quantised, half_float=half_float)
                                        
        except:
            raise RuntimeError(f"Configuration {model} with name {name} not found!")
        
        # ==============  rosros 节点 ===============
        i=0
        x,y,z=0,0,0  # 手动控制的位置
        t_x,t_y,t_z=0,0,0 # ros 收到的位置 后期会更新给x,y,z 保证手动控制给的位置是从上次的位姿开始的,而不会突变。
        step_=0.1

        theta_x=0 # 旋转角度
        theta_y=0
        theta_z=0
        step_theta=1

        scale_c2w=1
        t_c2w=np.array([0, 0, 0])
        R_c2w = quaternion_to_rotation_matrix((0,0,0,1))

        # 初始化消息
        image = np.zeros((480, 640, 3), dtype=np.uint8)

        flag_ = Float64()
        flag_.data = 1.0
        
        pose_=Pose()
        pose_.position.x =0
        pose_.position.y =0
        pose_.position.z =0
        pose_.orientation.x =0
        pose_.orientation.y =0
        pose_.orientation.z =0
        pose_.orientation.w =1


      
        ImagePoseFlag_Msg = PoseImgFlagMsg()
        timestamp = rospy.Time.now()# 时间戳 同于数据同步
       
        ImagePoseFlag_Msg.timestamp = std_msgs.msg.Time()  # 初始化时间戳
        ImagePoseFlag_Msg.timestamp.data = timestamp  # 设置当前时间
        ImagePoseFlag_Msg.image = bridge.cv2_to_imgmsg(image, encoding="bgr8")
        ImagePoseFlag_Msg.flag.data  = flag_
        ImagePoseFlag_Msg.pose = pose_
        


        

        # 用于构造渲染视角
        view = Camera_view(img_id=i, 
                R=R_c2w, 
                t=t_c2w, 
                scale=scale_c2w,
                FoVx=Fovx, 
                FoVy=Fovy, 
                image_width=width,
                image_height=height)
                #df = pd.DataFrame()
        # 初期渲染一张
        img_opencv = render_img( view, gaussians, pipeline, background)
        # 用于增加文字信息后的可视化
        image = img_opencv# 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText

        new_img=0 

        rate = rospy.Rate(20)  # 1 Hz
        while not rospy.is_shutdown():

            new_img=0


            image = img_opencv# 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText

            # 设置文字的参数

            font_scale = 2 # 大小
            thickness = 2 # 粗细

            text1 ="position_xyz: " + str(round(t_x, 2))+" , "+str(round(t_y, 2)) +" , "+ str(round(t_z, 2))
            position1 = (10, 60)  # 文字的位置
            cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness)

            text2 = "theta_xyz: " +  str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2))
            position2 = (10, 120)  # 文字的位置
            cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness)

            cv2.imshow('python_Node_Rendering_Img', image)
            #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换
            key = cv2.waitKey(1) & 0xFF
            
            if pose_queue: # 收到渲染请求 位姿队列不为空
                i=i+1 # 记录
                new_img=1

                timestamp, rec_pose_msg = pose_queue.popleft()
                t_x = rec_pose_msg.pose.position.x
                t_y = rec_pose_msg.pose.position.y
                t_z = rec_pose_msg.pose.position.z
                qx = rec_pose_msg.pose.orientation.x
                qy = rec_pose_msg.pose.orientation.y
                qz = rec_pose_msg.pose.orientation.z
                qw = rec_pose_msg.pose.orientation.w




                x,y,z=t_x,t_y,t_z# 将收到的位姿更新给按键变量 确保按键从现有位置开始运动
           
                scale_c2w=1
                t_c2w=np.array([t_x, t_y, t_z])
                quaternion = (qx,qy,qz,qw)
                R_c2w = quaternion_to_rotation_matrix(quaternion)
                # # 从旋转矩阵获取欧拉角
                roll, pitch, yaw = rotation_matrix_to_euler_angles(R_c2w)
                theta_x,theta_y,theta_z = roll, pitch, yaw

                
                flag_ = rec_pose_msg.flag
                pose_ = rec_pose_msg.pose


                #print(f"绕 X 轴的角度 滚转会使物体的左侧和右侧倾斜 (roll): {roll:.2f}°")
                #print(f"绕 Y 轴的角度 俯仰会使物体的前端向上或向下移动 (pitch): {pitch:.2f}°")
                #print(f"绕 Z 轴的角度 偏航会使物体的前端向左或向右转动 (yaw): {yaw:.2f}°")
            else:# 如果没有收到渲染请求 是否手动给了渲染位姿

                if key == 27:  # 按下 'q' 键
                    print("退出")
                    break
                elif key == ord('w'):  # 按下 's' 键
                    print("x前进")
                    x=x+step_
                    i=i+1
                    new_img=1                        
                elif key == ord('s'):  # 按下 's' 键
                    print("x后退")
                    x=x-step_
                    i=i+1
                    new_img=1   
                elif key == ord('a'):  # 按下 's' 键
                    print("y前进")
                    y=y+step_
                    i=i+1
                    new_img=1  
                elif key == ord('d'):  # 按下 's' 键
                    print("y后退")
                    y=y-step_
                    i=i+1
                    new_img=1   
                elif key == ord('q'):  # 按下 's' 键
                    print("z前进")
                    z=z+step_
                    i=i+1
                    new_img=1  
                elif key == ord('e'):  # 按下 's' 键
                    print("z后退")
                    z=z-step_
                    i=i+1
                    new_img=1  

                elif key == ord('i'):  # 按下 's' 键
                    print("x旋转+")
                    theta_x=theta_x+step_theta
                    if(theta_x>360 or theta_x<-360): theta_x=0
                    i=i+1
                    new_img=1  
                elif key == ord('k'):  # 按下 's' 键
                    print("x旋转-")
                    theta_x=theta_x-step_theta
                    if(theta_x>360 or theta_x<-360): theta_x=0
                    i=i+1
                    new_img=1  

                elif key == ord('j'):  # 按下 's' 键
                    print("y旋转+")
                    theta_y=theta_y+step_theta
                    if(theta_y>360 or theta_y<-360): theta_y=0
                    i=i+1
                    new_img=1  
                elif key == ord('l'):  # 按下 's' 键
                    print("y旋转-")
                    theta_y=theta_y-step_theta
                    if(theta_y>360 or theta_y<-360): theta_y=0
                    i=i+1
                    new_img=1  

                elif key == ord('u'):  # 按下 's' 键
                    print("z旋转+")
                    theta_z=theta_z+step_theta
                    if(theta_z>360 or theta_z<-360): theta_z=0
                    i=i+1
                    new_img=1  
                elif key == ord('o'):  # 按下 's' 键
                    print("z旋转-")
                    theta_z=theta_z-step_theta
                    if(theta_z>360 or theta_z<-360): theta_z=0
                    i=i+1
                    new_img=1  


                if new_img==1: 

                    t_x,t_y,t_z = x,y,z# 将按键变量更新给收到的位姿变量 确保图像可以显示刷新当前位置

                    # # 示例角度(以弧度为单位)
                    theta_x_pi = np.radians(theta_x)  # 30度
                    theta_y_pi = np.radians(theta_y)  # 45度
                    theta_z_pi = np.radians(theta_z)  # 60度

                    # # 计算旋转矩阵
                    R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi)
                    # 相机到世界的旋转矩阵
                    # R_c2w = np.array([
                    #     [1.0, 0.0, 0.0],
                    #     [0.0, 1.0, 0.0],
                    #     [0.0, 0.0, 1.0]
                    # ])
                    # print("旋转矩阵 R:")
                    # print(R)

                    # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置
                    t_c2w=np.array([x, y, z])
                    scale_c2w=1
                    
                    q_c2w=rotation_matrix_to_quaternion(R_c2w)

                    #timestamp = rospy.Time.now()

                    pose_.position.x =t_c2w[0]
                    pose_.position.y =t_c2w[1]
                    pose_.position.z =t_c2w[2]
                    pose_.orientation.x =q_c2w[0]
                    pose_.orientation.y =q_c2w[1]
                    pose_.orientation.z =q_c2w[2]
                    pose_.orientation.w =q_c2w[3]

                    


            if new_img==1:
                view = Camera_view(img_id=i, 
                                R=R_c2w, 
                                t=t_c2w, 
                                scale=scale_c2w,
                                FoVx=Fovx, 
                                FoVy=Fovy, 
                                image_width=width,
                                image_height=height)


                #df = pd.DataFrame()
                img_opencv = render_img( view, gaussians, pipeline, background)
                #random_image = np.random.randint(0, 256, (480, 640, 3), dtype=np.uint8)

                try:


 

                    ImagePoseFlag_Msg.timestamp.data = rospy.Time.now()
                    ImagePoseFlag_Msg.pose = pose_
                    ImagePoseFlag_Msg.flag.data  = flag_.data

                    ImagePoseFlag_Msg.image = bridge.cv2_to_imgmsg(image, "bgr8") 


                    pub_ImgPoseFlag.publish(ImagePoseFlag_Msg)

                    # Publish pose and image
                    #pose_pub.publish(pose_msg)
                    #image_pub.publish(image_msg)
                    print("图像数据发送", " 位姿xyz ", x, y, z)
                except CvBridgeError as e:
                    rospy.logerr(f'CvBridge Error: {e}')

            rate.sleep()



if __name__ == '__main__':
    # ============  3d 初始化 =================
    parser = ArgumentParser(description="渲染测试脚本")
    model = ModelParams(parser, sentinel=True)
    pipeline = PipelineParams(parser)
    parser.add_argument("--iteration", default=30000, type=int)
    parser.add_argument("--models",    default='baseline',type=str)  #'baseline','quantised'   'quantised_half' 
    parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。
    args = get_combined_args(parser) # 从cfg_args加载路径
    safe_state(args.quiet)
    #render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args))

    # ==============  rosros 节点初始化 ===============
    rospy.init_node('node2', anonymous=True)

    rospy.Subscriber('slam/image_pose_topic', PoseImgFlagMsg, pose_callback)

    global pub_ImgPoseFlag
    pub_ImgPoseFlag = rospy.Publisher('render/image_pose_topic', PoseImgFlagMsg, queue_size=10)


    publish_image_with_pose_gaosi(model.extract(args), args.iteration, pipeline.extract(args))

  API_render.py

修改自己的高斯渲染工程代码路径

import sys
directory = '/home/r9000k/v2_project/gaosi_slam/reduced-3dgs'
sys.path.append(directory)

import cv2
import numpy as np

import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import pandas as pd



import torch
from torch import nn
import numpy as np
from utils.graphics_utils import getWorld2View2, getProjectionMatrix

from scene.colmap_loader import *
from scene.dataset_readers import *

# 要选的视角
class Camera_view(nn.Module):
    def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, 
                 t=np.array([0.0, 0.0, 0.0]), scale=1.0
                 ):
        super(Camera_view, self).__init__()

 
        self.img_id = img_id
        # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 
        self.R = R
        self.t = t
        self.scale = scale # 尺度 展示没有
        
        self.FoVx = FoVx
        self.FoVy = FoVy

        self.image_width = image_width
        self.image_height = image_height

        self.zfar = 100.0
        self.znear = 0.01
        
        # 相机在世界坐标系下的位姿 相机到世界的变换矩阵
        sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置
        sRt_c2w[:3, :3] = self.R
        sRt_c2w[:3, 3] = self.scale*self.t
        sRt_c2w[3, 3] = 1.0

        # 3D高斯渲染  需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆
        #3D世界到3D相机坐标系 变换矩阵 
        #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        '''
        #将3D相机坐标投影到2D相机像素平面的投影矩阵
        # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的
        # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面  视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) 
        # 两者关系:
        # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。
        (相机前方为z正轴的坐标系)
        u=fx*x/z-W/2
        v=fy*y/z-H/2
        w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。)
        # 真实采集相机参数  fx fy cx=实际物理值 cy=实际物理值  成像分辨率 W*H
        # 渲染虚拟相机参数  fx fy cx=W/2   cy=H/2  成像分辨率 W*H
        '''
        self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda()
        # 3D世界点投影到2D相机像素坐标 变换矩阵
        self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
        self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到
        self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标
    
    
    def __del__(self):
        # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。
        # 删除张量并释放 GPU 内存
        del self.world_view_transform
        del self.full_proj_transform
        del self.inverse_full_proj_transform
        del self.camera_center

        torch.cuda.empty_cache()
        #print("cuda占用回收.")


#训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。
# 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择
#功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。
#半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。
# #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。
models_configuration = {
    'baseline': {
        'quantised': False,
        'half_float': False,
        'name': 'point_cloud.ply'
        },
    'quantised': {
        'quantised': True,
        'half_float': False,
        'name': 'point_cloud_quantised.ply'
        },
    'quantised_half': {
        'quantised': True,
        'half_float': True,
        'name': 'point_cloud_quantised_half.ply'
        },
}

def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name):
    fps = 0
    for _, view in enumerate(views):
        render(view, gaussians, pipeline, background, measure_fps=False)
    for _, view in enumerate(views):
        fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]

    fps *= 1000 / len(views)
    return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}")




def rotation_matrix_x(theta_x):
    """ 创建绕x轴旋转的旋转矩阵 """
    c, s = np.cos(theta_x), np.sin(theta_x)
    return np.array([
        [1, 0, 0],
        [0, c, -s],
        [0, s, c]
    ])

def rotation_matrix_y(theta_y):
    """ 创建绕y轴旋转的旋转矩阵 """
    c, s = np.cos(theta_y), np.sin(theta_y)
    return np.array([
        [c, 0, s],
        [0, 1, 0],
        [-s, 0, c]
    ])

def rotation_matrix_z(theta_z):
    """ 创建绕z轴旋转的旋转矩阵 """
    c, s = np.cos(theta_z), np.sin(theta_z)
    return np.array([
        [c, -s, 0],
        [s, c, 0],
        [0, 0, 1]
    ])

def combined_rotation_matrix(theta_x, theta_y, theta_z):
    """ 通过绕x、y、z轴的旋转角度创建组合旋转矩阵 """
    Rx = rotation_matrix_x(theta_x)
    Ry = rotation_matrix_y(theta_y)
    Rz = rotation_matrix_z(theta_z)
    
    # 旋转矩阵的组合顺序:绕z轴 -> 绕y轴 -> 绕x轴
    R = Rz @ Ry @ Rx
    return R
# # 示例角度(以弧度为单位)
# theta_x = np.radians(30)  # 30度
# theta_y = np.radians(45)  # 45度
# theta_z = np.radians(60)  # 60度

# # 计算旋转矩阵
# R = combined_rotation_matrix(theta_x, theta_y, theta_z)
# print("旋转矩阵 R:")
# print(R)


def quaternion_to_rotation_matrix(q):
    qx, qy, qz, qw = q
    R = np.array([
        [1 - 2*(qy**2 + qz**2), 2*(qx*qy - qz*qw), 2*(qx*qz + qy*qw)],
        [2*(qx*qy + qz*qw), 1 - 2*(qx**2 + qz**2), 2*(qy*qz - qx*qw)],
        [2*(qx*qz - qy*qw), 2*(qy*qz + qx*qw), 1 - 2*(qx**2 + qy**2)]
    ])
    return R

def rotation_matrix_to_euler_angles(R):
    sy = np.sqrt(R[0, 0]**2 + R[1, 0]**2)
    singular = sy < 1e-6

    if not singular:
        x = np.arctan2(R[2, 1], R[2, 2])
        y = np.arctan2(-R[2, 0], sy)
        z = np.arctan2(R[1, 0], R[0, 0])
    else:
        x = np.arctan2(-R[1, 2], R[1, 1])
        y = np.arctan2(-R[2, 0], sy)
        z = 0

    return np.degrees(x), np.degrees(y), np.degrees(z)


# # 示例四元数
# quaternion = (0.0, 0.0, 0.0, 1.0)  # 替换为你自己的四元数

# # 转换为旋转矩阵
# R = quaternion_to_rotation_matrix(quaternion)
# print("旋转矩阵 R:")
# print(R)

# # 从旋转矩阵获取欧拉角
# roll, pitch, yaw = rotation_matrix_to_euler_angles(R)
# print(f"绕 X 轴的角度 (roll): {roll:.2f}°")
# print(f"绕 Y 轴的角度 (pitch): {pitch:.2f}°")
# print(f"绕 Z 轴的角度 (yaw): {yaw:.2f}°")

def rotation_matrix_to_quaternion(R):
    """
    Convert a rotation matrix to a quaternion.
    
    Parameters:
    R (numpy.ndarray): A 3x3 rotation matrix.
    
    Returns:
    numpy.ndarray: A quaternion in the form of [w, x, y, z].
    """
    assert R.shape == (3, 3), "Input must be a 3x3 rotation matrix."
    
    # Calculate the trace of the matrix
    trace = np.trace(R)
    
    if trace > 0:
        s = np.sqrt(trace + 1.0) * 2  # s=4*qw
        qw = 0.25 * s
        qx = (R[2, 1] - R[1, 2]) / s
        qy = (R[0, 2] - R[2, 0]) / s
        qz = (R[1, 0] - R[0, 1]) / s
    else:
        # Find the largest diagonal element
        if R[0, 0] > R[1, 1] and R[0, 0] > R[2, 2]:
            s = np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2]) * 2  # s=4*qx
            qw = (R[2, 1] - R[1, 2]) / s
            qx = 0.25 * s
            qy = (R[0, 1] + R[1, 0]) / s
            qz = (R[0, 2] + R[2, 0]) / s
        elif R[1, 1] > R[2, 2]:
            s = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2]) * 2  # s=4*qy
            qw = (R[0, 2] - R[2, 0]) / s
            qx = (R[0, 1] + R[1, 0]) / s
            qy = 0.25 * s
            qz = (R[1, 2] + R[2, 1]) / s
        else:
            s = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1]) * 2  # s=4*qz
            qw = (R[1, 0] - R[0, 1]) / s
            qx = (R[0, 2] + R[2, 0]) / s
            qy = (R[1, 2] + R[2, 1]) / s
            qz = 0.25 * s

    return np.array([qw, qx, qy, qz])

# # 示例
# R = np.array([[0, -1, 0],
#               [1, 0, 0],
#               [0, 0, 1]])  # 90度绕Z轴旋转的矩阵

# quaternion = rotation_matrix_to_quaternion(R)
#print("Quaternion:", quaternion)


# 渲染单个视角图像并转化opencv图像
def render_img(view,
               gaussians, # 模型
               pipeline,
               background,
               ):
    
    #for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
    # view 拷贝  # gaussians 继承  pipeline 拷贝 background 继承
    rendering = render(view, gaussians, pipeline, background)["render"] 
    #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]
    #gt = view.original_image[0:3, :, :]

    # 将渲染图像转换为 NumPy 数组
    rendering_np = rendering.cpu().numpy()

    # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C)
    if rendering_np.shape[0] == 3:
        rendering_np = np.transpose(rendering_np, (1, 2, 0))

    # 将 RGB 转换为 BGR
    #opencv_img = rendering_np[..., ::-1] # 后续调用convert_image 一次性完成
    #print("转化前 ",opencv_img.dtype)
    opencv_img = convert_image(rendering_np) #高斯输出是 float32(imshow虽然可以直接显示出来) 但是opencv和ros发送需要8UC3 图像
    #print("转化后",opencv_img.dtype)
    
    # 及时清空显卡数据缓存

    #del rendering
    #del rendering_np
    #torch.cuda.empty_cache()

    # # 显示图像
    # cv2.imshow('Rendering', opencv_img)
    # cv2.waitKey(0)  # 等待用户按键

    return opencv_img


def convert_image(image_32fc3):
    # 确保图像类型是 float32
    if image_32fc3.dtype != np.float32:
        raise TypeError("输入图像必须是 32FC3 类型")
    
    # 将 32FC3 图像转换为 8UC3 图像
    # 将浮点值缩放到 0-255 范围
    image_8uc3 = cv2.convertScaleAbs(image_32fc3, alpha=(255.0 / np.max(image_32fc3)))
    
    # 转换为 BGR 颜色空间
    image_bgr8 = cv2.cvtColor(image_8uc3, cv2.COLOR_RGB2BGR)
    
    return image_bgr8



# 从slam读取相机参数
def Read_caminfo_from_orbslam(path):
    # wait to do
    pass

# 从colmap读取相机参数
def Read_caminfo_from_colmap(path):


    cam_intrinsics={}
    cam_extrinsics={}
    # 自带的代码
    '''
    from scene.colmap_loader import *
    from scene.dataset_readers import *
    '''
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

    '''
    加载相机内参 read_intrinsics_text()
    # Camera list with one line of data per camera:
    #   CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]
    # Number of cameras: 1
    1 PINHOLE 1920 1080 1114.0581411159471 1108.508409747483 960 540
    '''
    cam_id=1 # 从1开始。以一个相机模型 这里默认colmap一般只有一个相机. 但是可能存在GNSS照片和视频抽离的帧,2个相机模型参数
    cam_parameters=cam_intrinsics[cam_id]
    print("相机id",cam_parameters.id)
    print("相机模型",cam_parameters.model)
    print("图像宽度",cam_parameters.width)
    print("图像高度",cam_parameters.height)
    print("相机内参 fx ",cam_parameters.params[0])
    print("相机内参 fy ",cam_parameters.params[1])

    FovY=0
    FovX=0
    if cam_parameters.model=="SIMPLE_PINHOLE":
        focal_length_x = cam_parameters.params[0]
        FovY = focal2fov(focal_length_x, cam_parameters.height)
        FovX = focal2fov(focal_length_x, cam_parameters.width)
    elif cam_parameters.model=="PINHOLE":
        focal_length_x = cam_parameters.params[0]
        focal_length_y = cam_parameters.params[1]
        FovY = focal2fov(focal_length_y, cam_parameters.height)
        FovX = focal2fov(focal_length_x, cam_parameters.width)
    else:
        assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"



    cam_info = {
        "width": cam_parameters.width,
        "height": cam_parameters.height,
        "fx": cam_parameters.params[0],
        "fy": cam_parameters.params[1],
        "FovX": FovX,
        "FovY": FovY
    }
    return cam_info

def render_sets_handMode(dataset : ModelParams,
                iteration : int,
                pipeline : PipelineParams,
                ):
    with torch.no_grad():

        print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path)
        print("dataset._source_path 原始输入SFM数据路径",dataset.source_path)
        print("dataset.sh_degree 球谐系数",dataset.sh_degree)
        print("dataset.white_background 是否白色背景",dataset.sh_degree)

        cam_info = Read_caminfo_from_colmap(dataset.source_path)
       
        height, width = cam_info["height"], cam_info["width"]   
        Fovx,Fovy = cam_info["FovX"], cam_info["FovY"]   
        
        img_opencv =  np.ones((height, width, 3), dtype=np.uint8) * 0
        cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL)



        
        # 加载渲染器
        gaussians = GaussianModel(dataset.sh_degree)

        bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
        background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
          
        # 加载什么精度模型
        model = args.models
        print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model)
        name = models_configuration[model]['name']
        quantised = models_configuration[model]['quantised']
        half_float = models_configuration[model]['half_float']
        try:
            # 选择什么训练次数模型
            model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/"
            model_path=os.path.join(model_path,name)
            print("渲染实际加载的训练模型",model_path)
            gaussians.load_ply(model_path, quantised=quantised, half_float=half_float)
                                        
        except:
            raise RuntimeError(f"Configuration {model} with name {name} not found!")

        i=0 # 渲染的图像计数 id

        x=0 # 位置
        y=0
        z=0
        step_=0.1

        theta_x=0 # 旋转角度
        theta_y=0
        theta_z=0
        step_theta=1


        while True:

            new_img=0
            
            
            image = img_opencv # 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText

            # 设置文字的参数

            font_scale = 2 # 大小
            thickness = 2 # 粗细

            text1 ="position_xyz: " + str(round(x, 2))+" , "+str(round(y, 2)) +" , "+ str(round(z, 2))
            position1 = (10, 60)  # 文字的位置
            cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness)

            text2 = "theta_xyz: " +  str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2))
            position2 = (10, 120)  # 文字的位置
            cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness)

            cv2.imshow('Rendering_Img', image)
            #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换
            key = cv2.waitKey(1) & 0xFF

            if key == 27:  # 按下 'q' 键
                print("退出")
                break
            elif key == ord('w'):  # 按下 's' 键
                print("x前进")
                x=x+step_
                i=i+1
                new_img=1                        
            elif key == ord('s'):  # 按下 's' 键
                print("x后退")
                x=x-step_
                i=i+1
                new_img=1   
            elif key == ord('a'):  # 按下 's' 键
                print("y前进")
                y=y+step_
                i=i+1
                new_img=1  
            elif key == ord('d'):  # 按下 's' 键
                print("y后退")
                y=y-step_
                i=i+1
                new_img=1   
            elif key == ord('q'):  # 按下 's' 键
                print("z前进")
                z=z+step_
                i=i+1
                new_img=1  
            elif key == ord('e'):  # 按下 's' 键
                print("z后退")
                z=z-step_
                i=i+1
                new_img=1  

            elif key == ord('i'):  # 按下 's' 键
                print("x旋转+")
                theta_x=theta_x+step_theta
                if(theta_x>360 or theta_x<-360): theta_x=0
                i=i+1
                new_img=1  
            elif key == ord('k'):  # 按下 's' 键
                print("x旋转-")
                theta_x=theta_x-step_theta
                if(theta_x>360 or theta_x<-360): theta_x=0
                i=i+1
                new_img=1  

            elif key == ord('j'):  # 按下 's' 键
                print("y旋转+")
                theta_y=theta_y+step_theta
                if(theta_y>360 or theta_y<-360): theta_y=0
                i=i+1
                new_img=1  
            elif key == ord('l'):  # 按下 's' 键
                print("y旋转-")
                theta_y=theta_y-step_theta
                if(theta_y>360 or theta_y<-360): theta_y=0
                i=i+1
                new_img=1  

            elif key == ord('u'):  # 按下 's' 键
                print("z旋转+")
                theta_z=theta_z+step_theta
                if(theta_z>360 or theta_z<-360): theta_z=0
                i=i+1
                new_img=1  
            elif key == ord('o'):  # 按下 's' 键
                print("z旋转-")
                theta_z=theta_z-step_theta
                if(theta_z>360 or theta_z<-360): theta_z=0
                i=i+1
                new_img=1  


            if new_img==1: 

                # # 示例角度(以弧度为单位)
                theta_x_pi = np.radians(theta_x)  # 30度
                theta_y_pi = np.radians(theta_y)  # 45度
                theta_z_pi = np.radians(theta_z)  # 60度

                # # 计算旋转矩阵
                R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi)
                # 相机到世界的旋转矩阵
                # R_c2w = np.array([
                #     [1.0, 0.0, 0.0],
                #     [0.0, 1.0, 0.0],
                #     [0.0, 0.0, 1.0]
                # ])
                # print("旋转矩阵 R:")
                # print(R)

                # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置
                t_c2w=np.array([x, y, z])
                scale_c2w=1

                view = Camera_view(img_id=i, 
                                R=R_c2w, 
                                t=t_c2w, 
                                scale=scale_c2w,
                                FoVx=Fovx, 
                                FoVy=Fovy, 
                                image_width=width,
                                image_height=height)


                #df = pd.DataFrame()
                img_opencv = render_img( view, gaussians, pipeline, background)



            


# python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000 --iteration 7010 
             
# if __name__ == "__main__":
#     # Set up command line argument parser
#     parser = ArgumentParser(description="渲染测试脚本")
#     model = ModelParams(parser, sentinel=True)
#     pipeline = PipelineParams(parser)
#     parser.add_argument("--iteration", default=30000, type=int)
#     parser.add_argument("--models",    default='baseline',type=str)  #'baseline','quantised'   'quantised_half' 
#     parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。
#     args = get_combined_args(parser) # 从cfg_args加载路径
#     safe_state(args.quiet)
#     render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args))

  

标签:img,渲染,image,pose,np,msg,theta,位姿,节点
From: https://www.cnblogs.com/gooutlook/p/18418623

相关文章

  • Shader Graph自定义渐变色节点Gradiant
    ShaderGraph自定义渐变色节点GradiantUnity自带Shader中的Gradiant不能暴露在外部使用定义CustomFunction来制作暴露给外部的GradiantShaderGraph节点图CustomFunction代码if(inputValue<location1){outFloat=color1;}else......
  • 240907-Gradio渲染装饰器Render-Decorator
    A.最终效果B.示例代码importgradioasgrimportgradioasgrwithgr.Blocks()asdemo:input_text=gr.Textbox()@gr.render(inputs=input_text)defshow_split(text):iflen(text)==0:gr.Markdown("##NoInputProvided"......
  • 代码随想录算法训练营第四天|24两两交换链表中的节点 19删除链表的倒数第N个节点 02.0
    24.两两交换链表中的节点给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。由于今天赶时间,第一眼看完题目没思路就直接看文字解析了,但还是复述一下看完之后自己的理解/想法/思路。这一题感觉对......
  • Day17 二叉树part07| LeetCode 235. 二叉搜索树的最近公共祖先 ,701.二叉搜索树中的插
    235.二叉搜索树的最近公共祖先235.二叉搜索树的最近公共祖先利用二叉搜索树的特性——有序树,可知,如果中间节点是p和q的公共节点,那个中间节点的数值一定在[p,q]区间因此,从根节点往下搜索,遇到的第一个位于[p,q]或[q,p]区间的节点就是最近公共祖先classSolution{......
  • leetcode刷题day19|二叉树Part07(235. 二叉搜索树的最近公共祖先、701.二叉搜索树中的
    235.二叉搜索树的最近公共祖先思路:二叉搜索树首先考虑中序遍历。根据二叉搜索树的特性,如果p,q分别在中间节点的左右两边,该中间节点一定是最近公共祖先,如果在同一侧,则递归这一侧即可。递归三部曲:1、传入参数:根节点,p,q,返回节点。2、终止条件:因为p,q一定存在,所以不会遍历到......
  • mongo集群同步数据异常,手动同步节点副本数据
    转载请注明出处:数据同步方案当副本集节点的复制进程落后太多,以至于主节点覆盖了该节点尚未复制的oplog条目时,副本集节点就会变为“陈旧”。节点跟不上,就会变得“陈旧”。出现这种情况时,必须删除副本集节点的数据,然后执行初始同步,从而完全重新同步该节点。MongoDB提供了......
  • Unity中的三种渲染路径
    Unity中的渲染路径Unity的渲染路径在Unity里,渲染路径(RenderingPath)决定了光照是如何应用到UnityShader中的。因此,我们只有为Shader正确地选择和设置了需要的渲染路径,该shader的光照计算才可以被正确执行。unity中的渲染路径:ForwardRenderingPath(向前渲染路径)DeferredR......