基础学习
3D高斯渲染 (1-2)ros下 接受c++节点发送的位姿,python节点渲染图像返回
https://www.cnblogs.com/gooutlook/p/18385485
ros 自定义消息(图像+标志位+位姿)python和c++发布和接受
https://www.cnblogs.com/gooutlook/p/18412553
本工程代码
为什么要做这个,因为之前的版本 图像和位姿是分开两个话题发送的,然后接收端依靠时间戳同步,但是可能会导致数据对齐且写代码复杂问题,这里直接自定义一个复合数据,图像和位姿以及id全部封装一起一起发。
编译
执行脚本
#!/bin/bash #外部给与执行权限 #sudo chmod +x run_ros_nodes.sh # conda activate gaussian_splatting WORKSPACE_DIR="/home/r9000k/v2_project/gaosi_slam/ros/ros_cgg" # 修改1-1 自己创建的ros节点工程catkin_make根目录 python_DIR="/home/r9000k/v2_project/gaosi_slam/ros/ros_cgg/src/gaosi_img_pose_flag/src" # 修改1-2 自己创建的python脚本位置 data_dir="/home/r9000k/v2_project/data/NWPU" config_DIR="/home/dongdong/2project/0data/NWPU/FHY_config/GNSS_config.yaml" # 修改1-3 数据集 conda_envs="/home/r9000k/anaconda3" # 修改2-1 自己的conda 安装路径 # ROS_cv_briage_dir = "/home/r9000k/v1_software/opencv/catkin_ws_cv_bridge/devel/setup.bash" # 修改2-2 自己编译的cv_briage包节点,貌似不用也行 制定了依赖opencv3.4.9 而非自带4.2 # echo $ROS_cv_briage_dir conda_envs_int=$conda_envs"/etc/profile.d/conda.sh" # 不用改 conda自带初始化文件 echo $conda_envs_int conda_envs_bin=$conda_envs"/envs/gaussian_splatting/bin" # 不用改 conda自带python安装位置 脚本中需要指定是conda特定的环境python而不是系统默认的 echo $conda_envs_bin ROS_SETUP="/opt/ros/noetic/setup.bash" #不用改 安装时候添加到系统路径了 不需要每次都source 这里留着 #指定目录 # 启动 ROS Master 不用改 echo "Starting ROS 总结点..." gnome-terminal -- bash -c "\ cd $WORKSPACE_DIR; source devel/setup.bash; \ roscore; \ exec bash" # 等待 ROS Master 启动 sleep 3 echo "Running C++ 订阅节点..." gnome-terminal -- bash -c "\ cd $WORKSPACE_DIR; source devel/setup.bash; \ rosrun gaosi_img_pose_flag image_pose_flag_subscriber; \ exec bash" # source /home/r9000k/v2_project/gaosi_slam/ros/ros_cgg/devel/setup.bash # 运行 python 渲染图节点 # source conda_envs_int 和 source ROS_cv_briage_dir 非必要,但是考虑到脚本经常因为系统环境默认变量找不到导致的路径问题,这里还是强制给了也便于学习了解执行流程。 echo "Running python 订阅节点..." echo "1 激活conda本身(脚本执行需要) 2 激活conda环境 3运行python 节点 并跟上输入参数[训练模型保存根目录,指定要使用的模型训练次数,要测试的模型精度模式]" gnome-terminal -- bash -c "\ source $conda_envs_int; \ cd $WORKSPACE_DIR; source devel/setup.bash; \ conda activate gaussian_splatting ; \ cd $python_DIR; \ python3 v1_image_pose_subscriber.py \ -m $data_dir/gs_out/train1_out_sh0_num30000 \ --iteration 30000 \ --models baseline ;\ exec bash"
执行
创建消息
PoseImgFlagMsg.msg
# PoseImgFlagMsg.msg std_msgs/Time timestamp sensor_msgs/Image image std_msgs/Float64 flag geometry_msgs/Pose pose
std_msgs/Time timestamp 时间戳 sensor_msgs/Image image 图像 std_msgs/Float64 flag 请求的id, 某次请求渲染,可能要多张渲染图,同属于一个批次。 geometry_msgs/Pose pose 图像位姿
编译
CMakeLists.txt
1 工程名字 gaosi_img_pose_flag
cmake_minimum_required(VERSION 3.0.2) project(gaosi_img_pose_flag) find_package(catkin REQUIRED COMPONENTS roscpp geometry_msgs sensor_msgs cv_bridge message_filters # 消息同步 image_transport std_msgs # 自定义消息 message_generation # 自定义消息 ) # 自定义消息 add_message_files( FILES PoseImgFlagMsg.msg ) # 自定义消息 generate_messages( DEPENDENCIES std_msgs sensor_msgs geometry_msgs ) find_package(OpenCV REQUIRED) find_package(Boost REQUIRED COMPONENTS filesystem) find_package(Eigen3 REQUIRED) catkin_package( CATKIN_DEPENDS roscpp geometry_msgs sensor_msgs cv_bridge std_msgs message_runtime DEPENDS Boost ) include_directories( ${catkin_INCLUDE_DIRS} ${OpenCV_INCLUDE_DIRS} ${Boost_INCLUDE_DIRS} "/usr/local/include/eigen3" ) # # 编译发布节点 # add_executable(image_pose_flag_publisher src/image_pose_flag_publisher.cpp) # # 自定义消息引用 # add_dependencies(image_pose_flag_publisher ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) # target_link_libraries(image_pose_flag_publisher # ${catkin_LIBRARIES} # ${OpenCV_LIBRARIES} # ${Boost_LIBRARIES} # ) add_executable(image_pose_flag_subscriber src/image_pose_flag_subscriber.cpp) add_dependencies(image_pose_flag_subscriber ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) target_link_libraries(image_pose_flag_subscriber ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
ros包名字 未来调用需要用到
<name>gaosi_img_pose_flag</name>
<?xml version="1.0"?> <package format="2"> <name>gaosi_img_pose_flag</name> <version>0.0.1</version> <description> A package to publish and subscribe to images and GPS data using ROS. </description> <!-- Maintainer of the package --> <maintainer email="[email protected]">Your Name</maintainer> <!-- License of the package --> <license>MIT</license> <!-- Build tool required to build this package --> <buildtool_depend>catkin</buildtool_depend> <!-- Dependencies of the package during build and runtime --> <build_depend>roscpp</build_depend> <build_depend>sensor_msgs</build_depend> <build_depend>cv_bridge</build_depend> <build_depend>eigen</build_depend> <build_depend>geometry_msgs</build_depend> <build_depend>message_filters</build_depend> <build_depend>image_transport</build_depend> <!--自定义消息 --> <build_depend>message_generation</build_depend> <build_depend>message_runtime</build_depend> <build_depend>std_msgs</build_depend> <exec_depend>roscpp</exec_depend> <exec_depend>sensor_msgs</exec_depend> <exec_depend>cv_bridge</exec_depend> <exec_depend>eigen</exec_depend> <exec_depend>geometry_msgs</exec_depend> <exec_depend>message_filters</exec_depend> <exec_depend>image_transport</exec_depend> <!--自定义消息 --> <exec_depend>message_generation</exec_depend> <exec_depend>message_runtime</exec_depend> <exec_depend>std_msgs</exec_depend> <!-- Declare additional dependencies required for building this package --> <build_export_depend>roscpp</build_export_depend> <build_export_depend>sensor_msgs</build_export_depend> <build_export_depend>cv_bridge</build_export_depend> <build_export_depend>eigen</build_export_depend> <build_export_depend>geometry_msgs</build_export_depend> <build_export_depend>message_filters</build_export_depend> <build_export_depend>image_transport</build_export_depend> <!--自定义消息 --> <build_export_depend>message_generation</build_export_depend> <build_export_depend>message_runtime</build_export_depend> <build_export_depend>std_msgs</build_export_depend> <!-- Export information, can be used by other packages --> <export> <!-- Export any specific information here --> </export> </package>
c++ 发送位姿,获取渲染图
image_pose_flag_subscriber.cpp
#include <ros/ros.h> #include <ros/time.h> #include <std_msgs/Time.h> #include <queue> #include <mutex> #include <thread> #include <iostream> #include <sensor_msgs/Image.h> #include <std_msgs/Float64.h> #include <geometry_msgs/Pose.h> #include <cv_bridge/cv_bridge.h> #include <opencv2/opencv.hpp> #include <gaosi_img_pose_flag/PoseImgFlagMsg.h> // 更换为你包的名字 #include <Eigen/Dense> #include <Eigen/Geometry> // For Quaterniond // Global variables std::queue<gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr> data_queue; std::mutex queue_mutex; // 用于过于早位姿的节点 Eigen::Quaterniond Q_c2w ; Eigen::Vector3d t_c2w; void publishPose(ros::Publisher& pose_pub, std_msgs::Float64 flag_,Eigen::Quaterniond &quat, Eigen::Vector3d &t) { cv::Mat image_; //std_msgs::Float64 flag_; geometry_msgs::Pose pose_msg; pose_msg.position.x = t[0]; // 示例位置 pose_msg.position.y = t[1]; pose_msg.position.z = t[2]; pose_msg.orientation.x = quat.x(); // 示例姿态 pose_msg.orientation.y = quat.y(); pose_msg.orientation.z = quat.z(); pose_msg.orientation.w = quat.w(); ROS_INFO("send Pose - x: %f, y: %f, z: %f", pose_msg.position.x, pose_msg.position.y, pose_msg.position.z); gaosi_img_pose_flag::PoseImgFlagMsg pose_img_flag_msg; //pose_msg.image = *cv_bridge::CvImage(std_msgs::Header(), "bgr8", image_).toImageMsg(); pose_img_flag_msg.flag = flag_; pose_img_flag_msg.pose = pose_msg; // 设置当前时间戳 ros::Time current_time = ros::Time::now(); pose_img_flag_msg.timestamp = std_msgs::Time(); // 初始化时间戳 pose_img_flag_msg.timestamp.data = current_time; // 设置当前时间 // 发布PoseStamped消息 pose_pub.publish(pose_img_flag_msg); } // Callback function to handle incoming messages void render_callback(const gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr& msg) { std::lock_guard<std::mutex> lock(queue_mutex); data_queue.push(msg); } // Thread function to process the queue void processQueue() { while (ros::ok()) { std::queue<gaosi_img_pose_flag::PoseImgFlagMsg::ConstPtr> local_queue; { std::lock_guard<std::mutex> lock(queue_mutex); std::swap(local_queue, data_queue); // Safely access the queue } while (!local_queue.empty()) { auto msg = local_queue.front(); local_queue.pop(); // 将ROS图像消息转换为OpenCV图像 cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg->image, sensor_msgs::image_encodings::BGR8); cv::imshow("Rec_Image", cv_ptr->image); cv::waitKey(1); // Process the message ROS_INFO("Processing flag: %.2f", msg->flag.data); ROS_INFO("Processing pose: Position(%.2f, %.2f, %.2f), Orientation(%.2f, %.2f, %.2f, %.2f)", msg->pose.position.x, msg->pose.position.y, msg->pose.position.z, msg->pose.orientation.x, msg->pose.orientation.y, msg->pose.orientation.z, msg->pose.orientation.w); } // Optional: Sleep to avoid busy waiting std::this_thread::sleep_for(std::chrono::milliseconds(100)); } } void spinThread() { ros::spin();// 处理回调函数积累消息 } int main(int argc, char** argv) { ros::init(argc, argv, "image_pose_processor"); ros::NodeHandle nh; ros::Subscriber sub; ros::Publisher pose_pub; // Initialize the subscriber sub = nh.subscribe("render/image_pose_topic", 10, render_callback); pose_pub = nh.advertise<gaosi_img_pose_flag::PoseImgFlagMsg>("slam/image_pose_topic", 10); // Start a thread to run ros::spin() std::thread spin_thread(spinThread); // 处理rospin的线程 // Create a thread to process the queue std::thread processing_thread(processQueue); // 处理接受消息的线程 Q_c2w = Eigen::Quaterniond::Identity();; t_c2w={0,0,0.1}; std::string control_mode="auto";// 自动 auto 手动 hand ros::Rate rate(1);// Hz 频率 if(control_mode=="auto"){ // 定时器每秒调用一次 ros::Rate rate(1); double i =0; while (ros::ok()) { i=i+0.1; if(i>3)i=0; t_c2w={i,0,i}; std_msgs::Float64 Msg_id; // 创建 Float64 消息 Msg_id.data = i;// 将 double 值赋给消息的 data 成员 // todo 从slam获取想要的位姿 publishPose(pose_pub,Msg_id,Q_c2w,t_c2w); rate.sleep(); } } // Join the processing thread before exiting if (processing_thread.joinable()) { processing_thread.join(); } // Join the spin thread before exiting if (spin_thread.joinable()) { spin_thread.join(); } return 0; }
python接受位姿消息,渲染图像,返回图像,且可以手动漫游地图给与渲染图
v1_image_pose_subscriber.py
# sudo apt-get install python3-rosdep python3-rosinstall python3-rospkg import rospy import cv2 import numpy as np from sensor_msgs.msg import Image as ImageMsg from geometry_msgs.msg import PoseStamped,Pose from cv_bridge import CvBridge, CvBridgeError from collections import deque from sensor_msgs.msg import Image from std_msgs.msg import Float64 from geometry_msgs.msg import Pose from gaosi_img_pose_flag.msg import PoseImgFlagMsg # 更换为你包的名字 import std_msgs.msg # import sys # directory = '/home/dongdong/2project/2_3DGaosi/reduced-3dgs/' # sys.path.append(directory) from API_render import * pose_queue = deque() # Queue to store pose messages with timestamps bridge = CvBridge() def pose_callback(msg): # Store the pose message with timestamp in the queue pose_queue.append((msg.timestamp, msg)) #print("收到位姿 x", msg.pose.position.x, "y", msg.pose.position.y, "z", msg.pose.position.z) # try: # # Convert ROS image message to OpenCV image # cv_image = bridge.imgmsg_to_cv2(msg.image, desired_encoding="bgr8") # cv2.imshow("Received Image", cv_image) # cv2.waitKey(1) # except Exception as e: # rospy.logerr("Failed to convert image: %s", str(e)) # rospy.loginfo("Received flag: %.2f", msg.flag.data) # rospy.loginfo("Received pose: Position(%.2f, %.2f, %.2f), Orientation(%.2f, %.2f, %.2f, %.2f)", # msg.pose.position.x, msg.pose.position.y, msg.pose.position.z, # msg.pose.orientation.x, msg.pose.orientation.y, msg.pose.orientation.z, msg.pose.orientation.w) # 继承模式 直接使用而非拷贝 def publish_image_with_pose_gaosi(dataset : ModelParams, iteration : int, pipeline : PipelineParams, ): # ============ 3d 初始化 ================= with torch.no_grad():# 丢不更新 防止高斯模型数据修改 print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path) print("dataset._source_path 原始输入SFM数据路径",dataset.source_path) print("dataset.sh_degree 球谐系数",dataset.sh_degree) print("dataset.white_background 是否白色背景",dataset.sh_degree) cam_info = Read_caminfo_from_colmap(dataset.source_path) height, width = cam_info["height"], cam_info["width"] Fovx,Fovy = cam_info["FovX"], cam_info["FovY"] img_opencv = np.ones((height, width, 3), dtype=np.uint8) * 0 cv2.namedWindow('python_Node_Rendering_Img', cv2.WINDOW_NORMAL) # 加载渲染器 gaussians = GaussianModel(dataset.sh_degree) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") # 加载什么精度模型 model = args.models print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model) name = models_configuration[model]['name'] quantised = models_configuration[model]['quantised'] half_float = models_configuration[model]['half_float'] try: # 选择什么训练次数模型 model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/" model_path=os.path.join(model_path,name) print("渲染实际加载的训练模型",model_path) gaussians.load_ply(model_path, quantised=quantised, half_float=half_float) except: raise RuntimeError(f"Configuration {model} with name {name} not found!") # ============== rosros 节点 =============== i=0 x,y,z=0,0,0 # 手动控制的位置 t_x,t_y,t_z=0,0,0 # ros 收到的位置 后期会更新给x,y,z 保证手动控制给的位置是从上次的位姿开始的,而不会突变。 step_=0.1 theta_x=0 # 旋转角度 theta_y=0 theta_z=0 step_theta=1 scale_c2w=1 t_c2w=np.array([0, 0, 0]) R_c2w = quaternion_to_rotation_matrix((0,0,0,1)) # 初始化消息 image = np.zeros((480, 640, 3), dtype=np.uint8) flag_ = Float64() flag_.data = 1.0 pose_=Pose() pose_.position.x =0 pose_.position.y =0 pose_.position.z =0 pose_.orientation.x =0 pose_.orientation.y =0 pose_.orientation.z =0 pose_.orientation.w =1 ImagePoseFlag_Msg = PoseImgFlagMsg() timestamp = rospy.Time.now()# 时间戳 同于数据同步 ImagePoseFlag_Msg.timestamp = std_msgs.msg.Time() # 初始化时间戳 ImagePoseFlag_Msg.timestamp.data = timestamp # 设置当前时间 ImagePoseFlag_Msg.image = bridge.cv2_to_imgmsg(image, encoding="bgr8") ImagePoseFlag_Msg.flag.data = flag_ ImagePoseFlag_Msg.pose = pose_ # 用于构造渲染视角 view = Camera_view(img_id=i, R=R_c2w, t=t_c2w, scale=scale_c2w, FoVx=Fovx, FoVy=Fovy, image_width=width, image_height=height) #df = pd.DataFrame() # 初期渲染一张 img_opencv = render_img( view, gaussians, pipeline, background) # 用于增加文字信息后的可视化 image = img_opencv# 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText new_img=0 rate = rospy.Rate(20) # 1 Hz while not rospy.is_shutdown(): new_img=0 image = img_opencv# 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText # 设置文字的参数 font_scale = 2 # 大小 thickness = 2 # 粗细 text1 ="position_xyz: " + str(round(t_x, 2))+" , "+str(round(t_y, 2)) +" , "+ str(round(t_z, 2)) position1 = (10, 60) # 文字的位置 cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness) text2 = "theta_xyz: " + str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2)) position2 = (10, 120) # 文字的位置 cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness) cv2.imshow('python_Node_Rendering_Img', image) #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换 key = cv2.waitKey(1) & 0xFF if pose_queue: # 收到渲染请求 位姿队列不为空 i=i+1 # 记录 new_img=1 timestamp, rec_pose_msg = pose_queue.popleft() t_x = rec_pose_msg.pose.position.x t_y = rec_pose_msg.pose.position.y t_z = rec_pose_msg.pose.position.z qx = rec_pose_msg.pose.orientation.x qy = rec_pose_msg.pose.orientation.y qz = rec_pose_msg.pose.orientation.z qw = rec_pose_msg.pose.orientation.w x,y,z=t_x,t_y,t_z# 将收到的位姿更新给按键变量 确保按键从现有位置开始运动 scale_c2w=1 t_c2w=np.array([t_x, t_y, t_z]) quaternion = (qx,qy,qz,qw) R_c2w = quaternion_to_rotation_matrix(quaternion) # # 从旋转矩阵获取欧拉角 roll, pitch, yaw = rotation_matrix_to_euler_angles(R_c2w) theta_x,theta_y,theta_z = roll, pitch, yaw flag_ = rec_pose_msg.flag pose_ = rec_pose_msg.pose #print(f"绕 X 轴的角度 滚转会使物体的左侧和右侧倾斜 (roll): {roll:.2f}°") #print(f"绕 Y 轴的角度 俯仰会使物体的前端向上或向下移动 (pitch): {pitch:.2f}°") #print(f"绕 Z 轴的角度 偏航会使物体的前端向左或向右转动 (yaw): {yaw:.2f}°") else:# 如果没有收到渲染请求 是否手动给了渲染位姿 if key == 27: # 按下 'q' 键 print("退出") break elif key == ord('w'): # 按下 's' 键 print("x前进") x=x+step_ i=i+1 new_img=1 elif key == ord('s'): # 按下 's' 键 print("x后退") x=x-step_ i=i+1 new_img=1 elif key == ord('a'): # 按下 's' 键 print("y前进") y=y+step_ i=i+1 new_img=1 elif key == ord('d'): # 按下 's' 键 print("y后退") y=y-step_ i=i+1 new_img=1 elif key == ord('q'): # 按下 's' 键 print("z前进") z=z+step_ i=i+1 new_img=1 elif key == ord('e'): # 按下 's' 键 print("z后退") z=z-step_ i=i+1 new_img=1 elif key == ord('i'): # 按下 's' 键 print("x旋转+") theta_x=theta_x+step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('k'): # 按下 's' 键 print("x旋转-") theta_x=theta_x-step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('j'): # 按下 's' 键 print("y旋转+") theta_y=theta_y+step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('l'): # 按下 's' 键 print("y旋转-") theta_y=theta_y-step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('u'): # 按下 's' 键 print("z旋转+") theta_z=theta_z+step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 elif key == ord('o'): # 按下 's' 键 print("z旋转-") theta_z=theta_z-step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 if new_img==1: t_x,t_y,t_z = x,y,z# 将按键变量更新给收到的位姿变量 确保图像可以显示刷新当前位置 # # 示例角度(以弧度为单位) theta_x_pi = np.radians(theta_x) # 30度 theta_y_pi = np.radians(theta_y) # 45度 theta_z_pi = np.radians(theta_z) # 60度 # # 计算旋转矩阵 R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi) # 相机到世界的旋转矩阵 # R_c2w = np.array([ # [1.0, 0.0, 0.0], # [0.0, 1.0, 0.0], # [0.0, 0.0, 1.0] # ]) # print("旋转矩阵 R:") # print(R) # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置 t_c2w=np.array([x, y, z]) scale_c2w=1 q_c2w=rotation_matrix_to_quaternion(R_c2w) #timestamp = rospy.Time.now() pose_.position.x =t_c2w[0] pose_.position.y =t_c2w[1] pose_.position.z =t_c2w[2] pose_.orientation.x =q_c2w[0] pose_.orientation.y =q_c2w[1] pose_.orientation.z =q_c2w[2] pose_.orientation.w =q_c2w[3] if new_img==1: view = Camera_view(img_id=i, R=R_c2w, t=t_c2w, scale=scale_c2w, FoVx=Fovx, FoVy=Fovy, image_width=width, image_height=height) #df = pd.DataFrame() img_opencv = render_img( view, gaussians, pipeline, background) #random_image = np.random.randint(0, 256, (480, 640, 3), dtype=np.uint8) try: ImagePoseFlag_Msg.timestamp.data = rospy.Time.now() ImagePoseFlag_Msg.pose = pose_ ImagePoseFlag_Msg.flag.data = flag_.data ImagePoseFlag_Msg.image = bridge.cv2_to_imgmsg(image, "bgr8") pub_ImgPoseFlag.publish(ImagePoseFlag_Msg) # Publish pose and image #pose_pub.publish(pose_msg) #image_pub.publish(image_msg) print("图像数据发送", " 位姿xyz ", x, y, z) except CvBridgeError as e: rospy.logerr(f'CvBridge Error: {e}') rate.sleep() if __name__ == '__main__': # ============ 3d 初始化 ================= parser = ArgumentParser(description="渲染测试脚本") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) parser.add_argument("--iteration", default=30000, type=int) parser.add_argument("--models", default='baseline',type=str) #'baseline','quantised' 'quantised_half' parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。 args = get_combined_args(parser) # 从cfg_args加载路径 safe_state(args.quiet) #render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args)) # ============== rosros 节点初始化 =============== rospy.init_node('node2', anonymous=True) rospy.Subscriber('slam/image_pose_topic', PoseImgFlagMsg, pose_callback) global pub_ImgPoseFlag pub_ImgPoseFlag = rospy.Publisher('render/image_pose_topic', PoseImgFlagMsg, queue_size=10) publish_image_with_pose_gaosi(model.extract(args), args.iteration, pipeline.extract(args))
API_render.py
修改自己的高斯渲染工程代码路径
import sys directory = '/home/r9000k/v2_project/gaosi_slam/reduced-3dgs' sys.path.append(directory) import cv2 import numpy as np import torch from scene import Scene import os from tqdm import tqdm from os import makedirs from gaussian_renderer import render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args from gaussian_renderer import GaussianModel import pandas as pd import torch from torch import nn import numpy as np from utils.graphics_utils import getWorld2View2, getProjectionMatrix from scene.colmap_loader import * from scene.dataset_readers import * # 要选的视角 class Camera_view(nn.Module): def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, t=np.array([0.0, 0.0, 0.0]), scale=1.0 ): super(Camera_view, self).__init__() self.img_id = img_id # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 self.R = R self.t = t self.scale = scale # 尺度 展示没有 self.FoVx = FoVx self.FoVy = FoVy self.image_width = image_width self.image_height = image_height self.zfar = 100.0 self.znear = 0.01 # 相机在世界坐标系下的位姿 相机到世界的变换矩阵 sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置 sRt_c2w[:3, :3] = self.R sRt_c2w[:3, 3] = self.scale*self.t sRt_c2w[3, 3] = 1.0 # 3D高斯渲染 需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆 #3D世界到3D相机坐标系 变换矩阵 #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # ''' #将3D相机坐标投影到2D相机像素平面的投影矩阵 # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的 # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面 视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) # 两者关系: # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。 (相机前方为z正轴的坐标系) u=fx*x/z-W/2 v=fy*y/z-H/2 w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。) # 真实采集相机参数 fx fy cx=实际物理值 cy=实际物理值 成像分辨率 W*H # 渲染虚拟相机参数 fx fy cx=W/2 cy=H/2 成像分辨率 W*H ''' self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda() # 3D世界点投影到2D相机像素坐标 变换矩阵 self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到 self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标 def __del__(self): # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。 # 删除张量并释放 GPU 内存 del self.world_view_transform del self.full_proj_transform del self.inverse_full_proj_transform del self.camera_center torch.cuda.empty_cache() #print("cuda占用回收.") #训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。 # 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择 #功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。 #半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。 # #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。 models_configuration = { 'baseline': { 'quantised': False, 'half_float': False, 'name': 'point_cloud.ply' }, 'quantised': { 'quantised': True, 'half_float': False, 'name': 'point_cloud_quantised.ply' }, 'quantised_half': { 'quantised': True, 'half_float': True, 'name': 'point_cloud_quantised_half.ply' }, } def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name): fps = 0 for _, view in enumerate(views): render(view, gaussians, pipeline, background, measure_fps=False) for _, view in enumerate(views): fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] fps *= 1000 / len(views) return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}") def rotation_matrix_x(theta_x): """ 创建绕x轴旋转的旋转矩阵 """ c, s = np.cos(theta_x), np.sin(theta_x) return np.array([ [1, 0, 0], [0, c, -s], [0, s, c] ]) def rotation_matrix_y(theta_y): """ 创建绕y轴旋转的旋转矩阵 """ c, s = np.cos(theta_y), np.sin(theta_y) return np.array([ [c, 0, s], [0, 1, 0], [-s, 0, c] ]) def rotation_matrix_z(theta_z): """ 创建绕z轴旋转的旋转矩阵 """ c, s = np.cos(theta_z), np.sin(theta_z) return np.array([ [c, -s, 0], [s, c, 0], [0, 0, 1] ]) def combined_rotation_matrix(theta_x, theta_y, theta_z): """ 通过绕x、y、z轴的旋转角度创建组合旋转矩阵 """ Rx = rotation_matrix_x(theta_x) Ry = rotation_matrix_y(theta_y) Rz = rotation_matrix_z(theta_z) # 旋转矩阵的组合顺序:绕z轴 -> 绕y轴 -> 绕x轴 R = Rz @ Ry @ Rx return R # # 示例角度(以弧度为单位) # theta_x = np.radians(30) # 30度 # theta_y = np.radians(45) # 45度 # theta_z = np.radians(60) # 60度 # # 计算旋转矩阵 # R = combined_rotation_matrix(theta_x, theta_y, theta_z) # print("旋转矩阵 R:") # print(R) def quaternion_to_rotation_matrix(q): qx, qy, qz, qw = q R = np.array([ [1 - 2*(qy**2 + qz**2), 2*(qx*qy - qz*qw), 2*(qx*qz + qy*qw)], [2*(qx*qy + qz*qw), 1 - 2*(qx**2 + qz**2), 2*(qy*qz - qx*qw)], [2*(qx*qz - qy*qw), 2*(qy*qz + qx*qw), 1 - 2*(qx**2 + qy**2)] ]) return R def rotation_matrix_to_euler_angles(R): sy = np.sqrt(R[0, 0]**2 + R[1, 0]**2) singular = sy < 1e-6 if not singular: x = np.arctan2(R[2, 1], R[2, 2]) y = np.arctan2(-R[2, 0], sy) z = np.arctan2(R[1, 0], R[0, 0]) else: x = np.arctan2(-R[1, 2], R[1, 1]) y = np.arctan2(-R[2, 0], sy) z = 0 return np.degrees(x), np.degrees(y), np.degrees(z) # # 示例四元数 # quaternion = (0.0, 0.0, 0.0, 1.0) # 替换为你自己的四元数 # # 转换为旋转矩阵 # R = quaternion_to_rotation_matrix(quaternion) # print("旋转矩阵 R:") # print(R) # # 从旋转矩阵获取欧拉角 # roll, pitch, yaw = rotation_matrix_to_euler_angles(R) # print(f"绕 X 轴的角度 (roll): {roll:.2f}°") # print(f"绕 Y 轴的角度 (pitch): {pitch:.2f}°") # print(f"绕 Z 轴的角度 (yaw): {yaw:.2f}°") def rotation_matrix_to_quaternion(R): """ Convert a rotation matrix to a quaternion. Parameters: R (numpy.ndarray): A 3x3 rotation matrix. Returns: numpy.ndarray: A quaternion in the form of [w, x, y, z]. """ assert R.shape == (3, 3), "Input must be a 3x3 rotation matrix." # Calculate the trace of the matrix trace = np.trace(R) if trace > 0: s = np.sqrt(trace + 1.0) * 2 # s=4*qw qw = 0.25 * s qx = (R[2, 1] - R[1, 2]) / s qy = (R[0, 2] - R[2, 0]) / s qz = (R[1, 0] - R[0, 1]) / s else: # Find the largest diagonal element if R[0, 0] > R[1, 1] and R[0, 0] > R[2, 2]: s = np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2]) * 2 # s=4*qx qw = (R[2, 1] - R[1, 2]) / s qx = 0.25 * s qy = (R[0, 1] + R[1, 0]) / s qz = (R[0, 2] + R[2, 0]) / s elif R[1, 1] > R[2, 2]: s = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2]) * 2 # s=4*qy qw = (R[0, 2] - R[2, 0]) / s qx = (R[0, 1] + R[1, 0]) / s qy = 0.25 * s qz = (R[1, 2] + R[2, 1]) / s else: s = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1]) * 2 # s=4*qz qw = (R[1, 0] - R[0, 1]) / s qx = (R[0, 2] + R[2, 0]) / s qy = (R[1, 2] + R[2, 1]) / s qz = 0.25 * s return np.array([qw, qx, qy, qz]) # # 示例 # R = np.array([[0, -1, 0], # [1, 0, 0], # [0, 0, 1]]) # 90度绕Z轴旋转的矩阵 # quaternion = rotation_matrix_to_quaternion(R) #print("Quaternion:", quaternion) # 渲染单个视角图像并转化opencv图像 def render_img(view, gaussians, # 模型 pipeline, background, ): #for idx, view in enumerate(tqdm(views, desc="Rendering progress")): # view 拷贝 # gaussians 继承 pipeline 拷贝 background 继承 rendering = render(view, gaussians, pipeline, background)["render"] #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] #gt = view.original_image[0:3, :, :] # 将渲染图像转换为 NumPy 数组 rendering_np = rendering.cpu().numpy() # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C) if rendering_np.shape[0] == 3: rendering_np = np.transpose(rendering_np, (1, 2, 0)) # 将 RGB 转换为 BGR #opencv_img = rendering_np[..., ::-1] # 后续调用convert_image 一次性完成 #print("转化前 ",opencv_img.dtype) opencv_img = convert_image(rendering_np) #高斯输出是 float32(imshow虽然可以直接显示出来) 但是opencv和ros发送需要8UC3 图像 #print("转化后",opencv_img.dtype) # 及时清空显卡数据缓存 #del rendering #del rendering_np #torch.cuda.empty_cache() # # 显示图像 # cv2.imshow('Rendering', opencv_img) # cv2.waitKey(0) # 等待用户按键 return opencv_img def convert_image(image_32fc3): # 确保图像类型是 float32 if image_32fc3.dtype != np.float32: raise TypeError("输入图像必须是 32FC3 类型") # 将 32FC3 图像转换为 8UC3 图像 # 将浮点值缩放到 0-255 范围 image_8uc3 = cv2.convertScaleAbs(image_32fc3, alpha=(255.0 / np.max(image_32fc3))) # 转换为 BGR 颜色空间 image_bgr8 = cv2.cvtColor(image_8uc3, cv2.COLOR_RGB2BGR) return image_bgr8 # 从slam读取相机参数 def Read_caminfo_from_orbslam(path): # wait to do pass # 从colmap读取相机参数 def Read_caminfo_from_colmap(path): cam_intrinsics={} cam_extrinsics={} # 自带的代码 ''' from scene.colmap_loader import * from scene.dataset_readers import * ''' try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) ''' 加载相机内参 read_intrinsics_text() # Camera list with one line of data per camera: # CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[] # Number of cameras: 1 1 PINHOLE 1920 1080 1114.0581411159471 1108.508409747483 960 540 ''' cam_id=1 # 从1开始。以一个相机模型 这里默认colmap一般只有一个相机. 但是可能存在GNSS照片和视频抽离的帧,2个相机模型参数 cam_parameters=cam_intrinsics[cam_id] print("相机id",cam_parameters.id) print("相机模型",cam_parameters.model) print("图像宽度",cam_parameters.width) print("图像高度",cam_parameters.height) print("相机内参 fx ",cam_parameters.params[0]) print("相机内参 fy ",cam_parameters.params[1]) FovY=0 FovX=0 if cam_parameters.model=="SIMPLE_PINHOLE": focal_length_x = cam_parameters.params[0] FovY = focal2fov(focal_length_x, cam_parameters.height) FovX = focal2fov(focal_length_x, cam_parameters.width) elif cam_parameters.model=="PINHOLE": focal_length_x = cam_parameters.params[0] focal_length_y = cam_parameters.params[1] FovY = focal2fov(focal_length_y, cam_parameters.height) FovX = focal2fov(focal_length_x, cam_parameters.width) else: assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" cam_info = { "width": cam_parameters.width, "height": cam_parameters.height, "fx": cam_parameters.params[0], "fy": cam_parameters.params[1], "FovX": FovX, "FovY": FovY } return cam_info def render_sets_handMode(dataset : ModelParams, iteration : int, pipeline : PipelineParams, ): with torch.no_grad(): print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path) print("dataset._source_path 原始输入SFM数据路径",dataset.source_path) print("dataset.sh_degree 球谐系数",dataset.sh_degree) print("dataset.white_background 是否白色背景",dataset.sh_degree) cam_info = Read_caminfo_from_colmap(dataset.source_path) height, width = cam_info["height"], cam_info["width"] Fovx,Fovy = cam_info["FovX"], cam_info["FovY"] img_opencv = np.ones((height, width, 3), dtype=np.uint8) * 0 cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL) # 加载渲染器 gaussians = GaussianModel(dataset.sh_degree) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") # 加载什么精度模型 model = args.models print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model) name = models_configuration[model]['name'] quantised = models_configuration[model]['quantised'] half_float = models_configuration[model]['half_float'] try: # 选择什么训练次数模型 model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/" model_path=os.path.join(model_path,name) print("渲染实际加载的训练模型",model_path) gaussians.load_ply(model_path, quantised=quantised, half_float=half_float) except: raise RuntimeError(f"Configuration {model} with name {name} not found!") i=0 # 渲染的图像计数 id x=0 # 位置 y=0 z=0 step_=0.1 theta_x=0 # 旋转角度 theta_y=0 theta_z=0 step_theta=1 while True: new_img=0 image = img_opencv # 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText # 设置文字的参数 font_scale = 2 # 大小 thickness = 2 # 粗细 text1 ="position_xyz: " + str(round(x, 2))+" , "+str(round(y, 2)) +" , "+ str(round(z, 2)) position1 = (10, 60) # 文字的位置 cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness) text2 = "theta_xyz: " + str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2)) position2 = (10, 120) # 文字的位置 cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness) cv2.imshow('Rendering_Img', image) #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换 key = cv2.waitKey(1) & 0xFF if key == 27: # 按下 'q' 键 print("退出") break elif key == ord('w'): # 按下 's' 键 print("x前进") x=x+step_ i=i+1 new_img=1 elif key == ord('s'): # 按下 's' 键 print("x后退") x=x-step_ i=i+1 new_img=1 elif key == ord('a'): # 按下 's' 键 print("y前进") y=y+step_ i=i+1 new_img=1 elif key == ord('d'): # 按下 's' 键 print("y后退") y=y-step_ i=i+1 new_img=1 elif key == ord('q'): # 按下 's' 键 print("z前进") z=z+step_ i=i+1 new_img=1 elif key == ord('e'): # 按下 's' 键 print("z后退") z=z-step_ i=i+1 new_img=1 elif key == ord('i'): # 按下 's' 键 print("x旋转+") theta_x=theta_x+step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('k'): # 按下 's' 键 print("x旋转-") theta_x=theta_x-step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('j'): # 按下 's' 键 print("y旋转+") theta_y=theta_y+step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('l'): # 按下 's' 键 print("y旋转-") theta_y=theta_y-step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('u'): # 按下 's' 键 print("z旋转+") theta_z=theta_z+step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 elif key == ord('o'): # 按下 's' 键 print("z旋转-") theta_z=theta_z-step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 if new_img==1: # # 示例角度(以弧度为单位) theta_x_pi = np.radians(theta_x) # 30度 theta_y_pi = np.radians(theta_y) # 45度 theta_z_pi = np.radians(theta_z) # 60度 # # 计算旋转矩阵 R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi) # 相机到世界的旋转矩阵 # R_c2w = np.array([ # [1.0, 0.0, 0.0], # [0.0, 1.0, 0.0], # [0.0, 0.0, 1.0] # ]) # print("旋转矩阵 R:") # print(R) # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置 t_c2w=np.array([x, y, z]) scale_c2w=1 view = Camera_view(img_id=i, R=R_c2w, t=t_c2w, scale=scale_c2w, FoVx=Fovx, FoVy=Fovy, image_width=width, image_height=height) #df = pd.DataFrame() img_opencv = render_img( view, gaussians, pipeline, background) # python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000 --iteration 7010 # if __name__ == "__main__": # # Set up command line argument parser # parser = ArgumentParser(description="渲染测试脚本") # model = ModelParams(parser, sentinel=True) # pipeline = PipelineParams(parser) # parser.add_argument("--iteration", default=30000, type=int) # parser.add_argument("--models", default='baseline',type=str) #'baseline','quantised' 'quantised_half' # parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。 # args = get_combined_args(parser) # 从cfg_args加载路径 # safe_state(args.quiet) # render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args))
标签:img,渲染,image,pose,np,msg,theta,位姿,节点 From: https://www.cnblogs.com/gooutlook/p/18418623