首页 > 编程语言 >图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路

图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路

时间:2024-09-15 09:49:09浏览次数:12  
标签:运输成本 val int Bellman ford 算法 minDist 权值 include

本系列算法用来解决有负权边的情况

Bellman_ford 算法精讲

题目链接:94. 城市间货物运输 I

题目描述:

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。

城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。

算法思想:

图中不存在回路

Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。(动态规划思想)

松弛操作:minDist[B] = min(minDist[A] + value, minDist[B])

对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离

代码:

  • 时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
  • 空间复杂度: O(N) ,即 minDist 数组所开辟的空间
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid;

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid.push_back({p1, p2, val});

    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;
    for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
        for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
            int from = side[0]; // 边的出发点
            int to = side[1]; // 边的到达点
            int price = side[2]; // 边的权值
            // 松弛操作 
            // minDist[from] != INT_MAX 防止从未计算过的节点出发
            if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) { 
                minDist[to] = minDist[from] + price;  
            }
        }
    }
    if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径

}

SPFA算法(Bellman_ford 队列优化算法)

题目链接:94. 城市间货物运输 I

题目描述:

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。

城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。

算法思想:

Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。使用队列/栈来保存所连节点后的节点(类似于宽搜)

使用一个数组来判断当前节点是否已存在于队列中

代码:

如果图越稠密,则 SPFA的效率越接近与 Bellman_ford。

反之,图越稀疏,SPFA的效率就越高。

#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;

struct Edge { //邻接表
    int to;  // 链接的节点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};


int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1); 

    vector<bool> isInQueue(n + 1); // 加入优化,已经在队里里的元素不用重复添加

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));
    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;

    queue<int> que;
    que.push(start); 

    while (!que.empty()) {

        int node = que.front(); que.pop();
        isInQueue[node] = false; // 从队列里取出的时候,要取消标记,我们只保证已经在队列里的元素不用重复加入
        for (Edge edge : grid[node]) {
            int from = node;
            int to = edge.to;
            int value = edge.val;
            if (minDist[to] > minDist[from] + value) { // 开始松弛
                minDist[to] = minDist[from] + value; 
                if (isInQueue[to] == false) { // 已经在队列里的元素不用重复添加
                    que.push(to);
                    isInQueue[to] = true;
                }
            }
        }

    }
    if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}

Bellman ford之判断负权回路

题目链接:95. 城市间货物运输 II

题目描述:

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;

权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

然而,在评估从城市 1 到城市 n 的所有可能路径中综合政府补贴后的最低运输成本时,存在一种情况:图中可能出现负权回路

负权回路是指一系列道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。

为了避免货物运输商采用负权回路这种情况无限的赚取政府补贴,算法还需检测这种特殊情况。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。同时能够检测并适当处理负权回路的存在。

城市 1 到城市 n 之间可能会出现没有路径的情况

算法思想:

该题目是判断是否存在负权回路

在 bellman_ford 算法中,松弛 n-1 次所有的边 就可以求得 起点到任何节点的最短路径,松弛 n 次以上,minDist数组中的结果也不会有改变;而在有负权回路的情况下,一直都会有更短的最短路,所以 松弛 第n次,minDist数组 也会发生改变。

代码:

  • 时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
  • 空间复杂度: O(N) ,即 minDist 数组所开辟的空间
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid;

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid.push_back({p1, p2, val});

    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;
    bool flag = false;
    for (int i = 1; i <= n; i++) { // 这里我们松弛n次,最后一次判断负权回路
        for (vector<int> &side : grid) {
            int from = side[0];
            int to = side[1];
            int price = side[2];
            if (i < n) {
                if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
            } else { // 多加一次松弛判断负权回路
                if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) flag = true;

            }
        }

    }

    if (flag) cout << "circle" << endl;
    else if (minDist[end] == INT_MAX) {
        cout << "unconnected" << endl;
    } else {
        cout << minDist[end] << endl;
    }
}

Bellman ford之单源有限最短路

题目链接:96. 城市间货物运输 III

题目描述:

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请计算在最多经过 k 个城市的条件下,从城市 src 到城市 dst 的最低运输成本。

算法思想:

1、本题是最多经过 k 个城市, 那么是 k + 1条边相连的节点。

2、对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离,那么对所有边松弛 k + 1次,就是求 起点到达 与起点k + 1条边相连的节点的 最短距离。

3、在每次计算 minDist 时候,要基于 对所有边上一次松弛的 minDist 数值才行,所以我们要记录上一次松弛的minDist。

本题与Bellman_ford 算法区别

在Bellman_ford 算法中虽然某些点在每一轮更新时都会有所更新,但因为使用场景中不存在负权回路,求 节点1 到 节点n 的最短路径,松弛n-1 次就够了,松弛 大于 n-1次,结果也不会变。

本题中存在负权回路,若该点恰好位于回路中,其值会一直发生变化,假设有一个点在第二次就已经达到最短路径了,但由于更新还未结束,其又往后更新了k-1次,该值一定不正确。

代码:

  • 时间复杂度: O(K * E) , K为至多经过K个节点,E为图中边的数量
  • 空间复杂度: O(N) ,即 minDist 数组所开辟的空间
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int src, dst,k ,p1, p2, val ,m , n;
    
    cin >> n >> m;

    vector<vector<int>> grid;

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid.push_back({p1, p2, val});
    }

    cin >> src >> dst >> k;

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[src] = 0;
    vector<int> minDist_copy(n + 1); // 用来记录上一次遍历的结果
    for (int i = 1; i <= k + 1; i++) {
        minDist_copy = minDist; // 获取上一次计算的结果
        for (vector<int> &side : grid) {
            int from = side[0];
            int to = side[1];
            int price = side[2];
            // 注意使用 minDist_copy 来计算 minDist 
            if (minDist_copy[from] != INT_MAX && minDist[to] > minDist_copy[from] + price) {  
                minDist[to] = minDist_copy[from] + price;
            }
        }
    }
    if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
    else cout << minDist[dst] << endl; // 到达终点最短路径

}

标签:运输成本,val,int,Bellman,ford,算法,minDist,权值,include
From: https://blog.csdn.net/m0_67804957/article/details/142264401

相关文章

  • 鹏哥C语言36-37---循环/分支语句练习(折半查找算法)
    #define_CRT_SECURE_NO_WARNINGS//----------------------------------------------------------------------------------------------------3.4分支,循环练习//用代码解决问题=先想办法(编程思维)+再写代码(按照语法形式)//--------------------------------------------......
  • 算法复杂度
    1.复杂度的概念   算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量⼀个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。   时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量⼀个算法运行所需......
  • python实现插入排序算法
    插入排序是指,在已经排序过的列表,将需要添加的数据从开头依次进行比较,找到保存的位置,并将数据进行插入排序的方法。比如列表6,15,4,2,8,5,11,9,7,13第一步6和15比较,15大,不用比较。第二步4和前面两个数比较,就是6和15,4最小,将4插入到最前面。编程语言如何实现这个过程,将4和前......
  • 算法工程师重生之第二天(长度最小的子数组 螺旋矩阵II 区间和 开发商购买土地 总结 )
    参考文献代码随想录一、长度最小的子数组给定一个含有 n 个正整数的数组和一个正整数 target 。找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl,numsl+1,...,numsr-1,numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。示......
  • 代码随想录算法 - 二叉树5
    题目1530.二叉搜索树的最小绝对差给你一个二叉搜索树的根节点root,返回树中任意两不同节点值之间的最小差值。差值是一个正数,其数值等于两值之差的绝对值。示例1:输入:root=[4,2,6,1,3]输出:1示例2:输入:root=[1,0,48,null,null,12,49]输出:1提示:树中节点的数......
  • 【算法笔记】线性基
    线性基定义:给定数集\(s\),以异或运算张成的数集与\(S\)相同的极大线性无关集,称为原数集的一个线性基。性质:原数集的任意一个数都能有线性基内部的一些数异或得到。线性基内部任意数异或不为0线性基内数唯一,且保证性质一的情况下,数的个数最少。线性基内每个数的最高有效位......
  • 滑动窗口算法—最小覆盖子串
    题目         ”最小覆盖子串“问题,难度为Hard,题目如下:        给你两个字符串S和T,请你在S中找到包含T中全部字母的最短子串。如果S中没有这样一个子串,则算法返回空串,如果存在这样一个子串,则可以认为答案是唯一的。    比如输入S="ADB......
  • java计算机毕业设计协同过滤算法的就业推荐系统(开题+程序+论文)
    本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景在当今快速发展的数字经济时代,人才与企业的精准匹配成为推动产业升级与创新的关键。然而,面对海量的人才信息与多样化的岗位需求,传统的招聘方式往往效......