首页 > 编程语言 >Python统计实战:时间序列分析之二阶曲线预测和三阶曲线预测

Python统计实战:时间序列分析之二阶曲线预测和三阶曲线预测

时间:2024-07-06 16:02:31浏览次数:22  
标签:pre plt 预测 Python 曲线 三阶 二阶 df

为了解决特定问题而进行的学习是提高效率的最佳途径。这种方法能够使我们专注于最相关的知识和技能,从而更快地掌握解决问题所需的能力。

(以下练习题来源于《统计学—基于Python》。请在Q群455547227下载原始数据。


练习题

下表是某只股票连续35个交易日的收盘价格(前3行和后3行)。

(1)分别采用m=5和m=10对收盘价格进行平滑,并绘制实际值和平滑值的图形进行比较。

(2)分别采用以下方法进行预测,并绘制预测图和残差图,对结果进行比较。

        (a)简单指数平滑和Holt指数平滑;
        (b)一元线性回归和指数曲线;
        (c)二阶曲线和三阶曲线。


图形绘制与分析

本文就(2c)题展开分析。

(2c)收盘价的二阶和三阶曲线预测

有些现象的变化形态比较复杂,它们不是按照某种固定的形态变化,而是有升有降,在变化过程中可能有几个拐点,这时就需要拟合多项式函数。当只有一个拐点时,可以拟合二阶曲线,即抛物线;当有两个拐点时,需要拟合三阶曲线;当有k一1个拐点时,需要拟合k阶曲线。

建立二阶曲线模型和三阶曲线模型

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.formula.api import ols
plt.rcParams['font.sans-serif'] = ['Songti SC']
plt.rcParams['axes.unicode_minus'] = False
df = pd.read_csv('exercise11_1.csv')

# 拟合二阶曲线模型(model2)和三阶曲线模型(model3)
df['t'] = df['时间']-1
model2 = ols('收盘价 ~ t + pow(t, 2)', data = df).fit()  # 拟合二阶曲线
model3 = ols('收盘价 ~ t + pow(t, 2) + pow(t, 3)', data = df).fit() # 拟合三阶曲线

# 计算二阶曲线和三阶曲线的预测值和残差
df_pre = pd.DataFrame({'时间':df['时间'], '收盘价':df['收盘价'], 
                      '二阶曲线预测值':model2.fittedvalues, '二阶曲线残差':model2.resid,
                      '三阶曲线预测值':model3.fittedvalues, '三阶曲线残差':model3.resid})
df_pre.loc[35, '时间'] = 36
df_pre = df_pre.astype({'时间':int})
df_pre.loc[35, '二阶曲线预测值'] = model2.predict(exog = dict(t = 36)).values
df_pre.loc[35, '三阶曲线预测值'] = model3.predict(exog = dict(t = 36)).values
round(df_pre,2)

显示前16行结果

绘制实际值和预测值曲线

# 实际值和预测值曲线
# 图(a)预测图
plt.subplots(1, 2, figsize = (11, 4))
plt.subplot(121)
l1 = plt.plot(df_pre['收盘价'], marker = 'o', linewidth = 1)
l2 = plt.plot(df_pre['二阶曲线预测值'], marker = '+', ls = '-', linewidth = 1)
l3 = plt.plot(df_pre['三阶曲线预测值'], marker = '*', ls = '-.', linewidth = 1)

plt.axvline(34, ls = '--', c = 'grey', linewidth = 1)
plt.xticks(range(0, 35, 2), df_pre['时间'][::2])
plt.xlabel('时间', size = 12)
plt.ylabel('收盘价', size = 12)
plt.legend(['收盘价', '二阶曲线预测值', '三阶曲线预测值'], prop = {'size':11})
plt.title('(a)收盘价的二阶和三阶曲线预测', size = 13)

# 图(b)残差图
plt.subplot(122)
plt.scatter(range(len(df_pre['二阶曲线预测值'])), df_pre['二阶曲线残差'], marker = '+')
plt.scatter(range(len(df_pre['二阶曲线预测值'])), df_pre['三阶曲线残差'], marker = '*', linewidth = 1)
plt.hlines(0, 0, 35, linestyle = '--', color = 'red', linewidth = 1)

plt.xticks(range(0, 35, 2), df_pre['时间'][::2])
plt.xlabel('时间', size = 12)
plt.ylabel('残差', size = 12)
plt.legend(['二阶曲线残差', '三阶曲线残差'], prop = {'size':11})
plt.title('(b)二阶曲线和三阶曲线预测残差', size = 13)
plt.tight_layout()

左图展示了收盘价的实际值和二阶和三阶曲线的拟合值。从图形上看,三阶曲线拟合效果较少。右图显示,二阶曲线的预测残差和三阶曲线的预测残差总体上看没有明显的固定模式。同时,三阶曲线的预测残差较二阶曲线残差小一些,说明三阶曲线预测更加合理。


都读到这里了,不妨关注、点赞一下吧!

标签:pre,plt,预测,Python,曲线,三阶,二阶,df
From: https://blog.csdn.net/lucasluy2020/article/details/140230611

相关文章

  • RK3588-12将亮度调节从伽马曲线改调节为线性调节
    需求:    Rockchip-android11和android12系统亮度调节框调节亮度是曲线调节,需改为像低版本系统一样的线性调节效果(亮度递增效果)解决方法:代码路径:frameworks/base/packages/SettingsLib/src/com/android/settingslib/display/BrightnessUtils.java---a/pack......
  • Python统计实战:时间序列分析之一元线性回归预测和指数曲线预测
    为了解决特定问题而进行的学习是提高效率的最佳途径。这种方法能够使我们专注于最相关的知识和技能,从而更快地掌握解决问题所需的能力。(以下练习题来源于《统计学—基于Python》。请在Q群455547227下载原始数据。)练习题下表是某只股票连续35个交易日的收盘价格(前3行和后3行......
  • python-docx库 写入docx时中文不适配问题,中文异常问题解决办法。
    python-docx库写入docx时中文不适配问题,中文异常问题解决办法。通过以下方法可以成功将正文修改为宋体字体。这个是全文设置。fromdocx.oxml.nsimportqndoc=Document()doc.styles['Normal'].font.name=u'宋体'doc.styles['Normal']._element.rPr.rFonts.set(qn('w:......
  • 使用Python绘制甘特图
    使用Python绘制甘特图甘特图效果代码甘特图甘特图是一种项目管理工具,用于展示项目进度和任务安排。它通过条状图形表示各任务的起止时间,便于直观地查看项目的各个任务的进度和相互关系。效果[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(im......
  • 【BP时序预测】基于布谷鸟优化算法CS实现负荷数据预测单输入单输出附matlab代码
    %负荷数据预测单输入单输出(BP时序预测)%使用布谷鸟优化算法实现%假设你已经有了输入数据和对应的输出数据%输入数据应该是一个矩阵,每一行代表一个样本,每一列代表一个特征%输出数据应该是一个列向量,每个元素代表对应样本的输出%设置布谷鸟优化算法参数max_iter=......
  • 十分钟学习Python异常处理
    十分钟学习Python异常处理在编程过程中,错误和异常是不可避免的。Python提供了强大的异常处理机制,帮助我们捕获和处理运行时错误,使程序更加健壮和可靠。本文将带你在十分钟内快速掌握Python的异常处理基础知识。1.什么是异常?异常是指在程序运行过程中发生的错误,它会中断程序......
  • 一个基于Flask框架的Python Web应用程序
    dashboard.py主要实现了以下功能:1.用户注册与登录:提供了用户注册和登录的功能,用户的密码会被哈希处理后存储在users.json文件中。2.文件管理:实现了简单的文件管理功能,包括列出文件夹中的文件、上传文件和删除文件。只有管理员用户才能进行文件管理操作。3,路由定义:定义了......
  • 【python数据挖掘案列】利用线性回归(LR)实现天气变化的时间序列预测
    利用线性回归实现天气变化的时间序列预测一、引言天气预测一直是气象学和机器学习领域的重要研究内容。时间序列预测是其中的一种常见任务,旨在通过分析历史数据来预测未来的天气情况。在本文中,我们将使用线性回归模型来实现天气变化的时间序列预测,并介绍整个预测流程。二......
  • python 基于函数的API设计,理解接口与实现分离
    在Python中,基于函数的API设计中实现接口与实现分离是一种良好的编程实践,它可以提高代码的可维护性、可扩展性和可读性。接口:可以理解为一组定义好的函数签名,这些函数签名描述了函数的名称、参数以及返回值的类型,但不包含具体的实现逻辑。实现:则是针对接口中定义的函数......
  • python绘制一维离散点
    在Python中,绘制一维离散点通常意味着我们要在一条直线上标记出几个特定的点。这可以通过多种库来实现,但最常见和强大的库之一是matplotlib。以下是一个详细的代码示例,它展示了如何使用matplotlib库来绘制一维离散点,并且这个示例具有一定的参考价值和实际意义。1.绘制一维离散点......