01. 位带概述
位带操作简单的说,就是把每个比特膨胀为一个 32 位的字,当访问这些字的时候就达到了访问比特的目的,比如说 GPIO 的 ODR 寄存器有 32 个位,那么可以映射到 32 个地址上,我们去访问这 32 个地址就达到访问 32 个比特的目的。这样我们往某个地址写 1 就达到往对应比特位写 1 的目的,同样往某个地址写 0 就达到往对应的比特位写 0 的目的。
支持了位带操作后,可以使用普通的加载、存储指令来对单一的比特进行读写。在CM3中,有两个区中实现了位带。其中一个是 SRAM 区的最低 1MB 范围,第二个则是片内外设区的最低 1MB 范围。这两个区中的地址除了可以像普通的 RAM 一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个 32 位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。
SRAM 区中的位带地址映射
对于片上外设,映射关系如下表所示
03. 位带C语言实现
//位带操作,实现51类似的GPIO控制功能
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
//IO口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr (GPIOB_BASE+20) //0x40020414
#define GPIOC_ODR_Addr (GPIOC_BASE+20) //0x40020814
#define GPIOD_ODR_Addr (GPIOD_BASE+20) //0x40020C14
#define GPIOE_ODR_Addr (GPIOE_BASE+20) //0x40021014
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOG_ODR_Addr (GPIOG_BASE+20) //0x40021814
#define GPIOH_ODR_Addr (GPIOH_BASE+20) //0x40021C14
#define GPIOI_ODR_Addr (GPIOI_BASE+20) //0x40022014
#define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010
#define GPIOB_IDR_Addr (GPIOB_BASE+16) //0x40020410
#define GPIOC_IDR_Addr (GPIOC_BASE+16) //0x40020810
#define GPIOD_IDR_Addr (GPIOD_BASE+16) //0x40020C10
#define GPIOE_IDR_Addr (GPIOE_BASE+16) //0x40021010
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410
#define GPIOG_IDR_Addr (GPIOG_BASE+16) //0x40021810
#define GPIOH_IDR_Addr (GPIOH_BASE+16) //0x40021C10
#define GPIOI_IDR_Addr (GPIOI_BASE+16) //0x40022010
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入
#define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入
#define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入
#define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入
#define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入
#define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入
#define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入
#define PHout(n) BIT_ADDR(GPIOH_ODR_Addr,n) //输出
#define PHin(n) BIT_ADDR(GPIOH_IDR_Addr,n) //输入
#define PIout(n) BIT_ADDR(GPIOI_ODR_Addr,n) //输出
#define PIin(n) BIT_ADDR(GPIOI_IDR_Addr,n) //输入
那么初始化相应的GPIO之后就可以直接使用了。
led.h
#ifndef __LED_H__
#define __LED_H__
#include "sys.h"
//LED初始化
void LED_Init(void);
//位带操作
#define LED1 PFout(9)
#define LED2 PFout(10)
#endif /*__LED_H__*/
led.c
#include "led.h"
//LED初始化
void LED_Init(void)
{
GPIO_InitTypeDef gpio_InitTypeDef;
gpio_InitTypeDef.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;
gpio_InitTypeDef.GPIO_Mode = GPIO_Mode_OUT;
gpio_InitTypeDef.GPIO_Speed = GPIO_Speed_100MHz;
gpio_InitTypeDef.GPIO_OType = GPIO_OType_PP;
gpio_InitTypeDef.GPIO_PuPd = GPIO_PuPd_UP;
//使能时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
//GPIO初始化
GPIO_Init(GPIOF, &gpio_InitTypeDef);
//设置高电平 LED灭
GPIO_SetBits(GPIOF, GPIO_Pin_9 | GPIO_Pin_10);
}
main.c
#include "stm32f4xx.h"
#include "delay.h"
#include "led.h"
int main(void)
{
delay_init(168);
LED_Init();
//3. LED闪烁
while(1)
{
//灭
LED1 = 1;
LED2 = 1;
delay_ms(1000);
//亮
LED1 = 0;
LED2 = 0;
delay_ms(1000);
}
}
写入对比
读取对比
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/dengjin20104042056/article/details/108124642