import torch.nn as nn from collections import OrderedDict class BidirectionalLSTM(nn.Module): def __init__(self, nIn, nHidden, nOut): super(BidirectionalLSTM, self).__init__() self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True) self.embedding = nn.Linear(nHidden * 2, nOut) def forward(self, input): recurrent, _ = self.rnn(input) T, b, h = recurrent.size() t_rec = recurrent.view(T * b, h) output = self.embedding(t_rec) # [T * b, nOut] output = output.view(T, b, -1) return output class CRNN(nn.Module): def __init__(self, imgH, nc, nclass, nh, leakyRelu=False): super(CRNN, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' # 1x32x128 self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1) self.relu1 = nn.ReLU(True) self.pool1 = nn.MaxPool2d(2, 2) # 64x16x64 self.conv2 = nn.Conv2d(64, 128, 3, 1, 1) self.relu2 = nn.ReLU(True) self.pool2 = nn.MaxPool2d(2, 2) # 128x8x32 self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1) self.bn3 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU(True) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1) self.relu3_2 = nn.ReLU(True) self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 256x4x16 self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1) self.bn4 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU(True) self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1) self.relu4_2 = nn.ReLU(True) self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 512x2x16 self.conv5 = nn.Conv2d(512, 512, 2, 1, 0) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU(True) # 512x1x16 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.pool1(self.relu1(self.conv1(input))) x = self.pool2(self.relu2(self.conv2(x))) x = self.pool3(self.relu3_2(self.conv3_2(self.relu3_1(self.bn3(self.conv3_1(x)))))) x = self.pool4(self.relu4_2(self.conv4_2(self.relu4_1(self.bn4(self.conv4_1(x)))))) conv = self.relu5(self.bn5(self.conv5(x))) # print(conv.size()) b, c, h, w = conv.size() assert h == 1, "the height of conv must be 1" conv = conv.squeeze(2) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output class CRNN_v2(nn.Module): def __init__(self, imgH, nc, nclass, nh, leakyRelu=False): super(CRNN_v2, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' # 1x32x128 self.conv1_1 = nn.Conv2d(nc, 32, 3, 1, 1) self.bn1_1 = nn.BatchNorm2d(32) self.relu1_1 = nn.ReLU(True) self.conv1_2 = nn.Conv2d(32, 64, 3, 1, 1) self.bn1_2 = nn.BatchNorm2d(64) self.relu1_2 = nn.ReLU(True) self.pool1 = nn.MaxPool2d(2, 2) # 64x16x64 self.conv2_1 = nn.Conv2d(64, 64, 3, 1, 1) self.bn2_1 = nn.BatchNorm2d(64) self.relu2_1 = nn.ReLU(True) self.conv2_2 = nn.Conv2d(64, 128, 3, 1, 1) self.bn2_2 = nn.BatchNorm2d(128) self.relu2_2 = nn.ReLU(True) self.pool2 = nn.MaxPool2d(2, 2) # 128x8x32 self.conv3_1 = nn.Conv2d(128, 96, 3, 1, 1) self.bn3_1 = nn.BatchNorm2d(96) self.relu3_1 = nn.ReLU(True) self.conv3_2 = nn.Conv2d(96, 192, 3, 1, 1) self.bn3_2 = nn.BatchNorm2d(192) self.relu3_2 = nn.ReLU(True) self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 192x4x32 self.conv4_1 = nn.Conv2d(192, 128, 3, 1, 1) self.bn4_1 = nn.BatchNorm2d(128) self.relu4_1 = nn.ReLU(True) self.conv4_2 = nn.Conv2d(128, 256, 3, 1, 1) self.bn4_2 = nn.BatchNorm2d(256) self.relu4_2 = nn.ReLU(True) self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 256x2x32 self.bn5 = nn.BatchNorm2d(256) # 256x2x32 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.pool1(self.relu1_2(self.bn1_2(self.conv1_2(self.relu1_1(self.bn1_1(self.conv1_1(input))))))) x = self.pool2(self.relu2_2(self.bn2_2(self.conv2_2(self.relu2_1(self.bn2_1(self.conv2_1(x))))))) x = self.pool3(self.relu3_2(self.bn3_2(self.conv3_2(self.relu3_1(self.bn3_1(self.conv3_1(x))))))) x = self.pool4(self.relu4_2(self.bn4_2(self.conv4_2(self.relu4_1(self.bn4_1(self.conv4_1(x))))))) conv = self.bn5(x) # print(conv.size()) b, c, h, w = conv.size() assert h == 2, "the height of conv must be 2" conv = conv.reshape([b,c*h,w]) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output def conv3x3(nIn, nOut, stride=1): # "3x3 convolution with padding" return nn.Conv2d( nIn, nOut, kernel_size=3, stride=stride, padding=1, bias=False ) class basic_res_block(nn.Module): def __init__(self, nIn, nOut, stride=1, downsample=None): super( basic_res_block, self ).__init__() m = OrderedDict() m['conv1'] = conv3x3( nIn, nOut, stride ) m['bn1'] = nn.BatchNorm2d( nOut ) m['relu1'] = nn.ReLU( inplace=True ) m['conv2'] = conv3x3( nOut, nOut ) m['bn2'] = nn.BatchNorm2d( nOut ) self.group1 = nn.Sequential( m ) self.relu = nn.Sequential( nn.ReLU( inplace=True ) ) self.downsample = downsample def forward(self, x): if self.downsample is not None: residual = self.downsample( x ) else: residual = x out = self.group1( x ) + residual out = self.relu( out ) return out class CRNN_res(nn.Module): def __init__(self, imgH, nc, nclass, nh): super(CRNN_res, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1) self.relu1 = nn.ReLU(True) self.res1 = basic_res_block(64, 64) # 1x32x128 down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128)) self.res2_1 = basic_res_block( 64, 128, 2, down1 ) self.res2_2 = basic_res_block(128,128) # 64x16x64 down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256)) self.res3_1 = basic_res_block(128, 256, 2, down2) self.res3_2 = basic_res_block(256, 256) self.res3_3 = basic_res_block(256, 256) # 128x8x32 down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=(2, 1), bias=False),nn.BatchNorm2d(512)) self.res4_1 = basic_res_block(256, 512, (2, 1), down3) self.res4_2 = basic_res_block(512, 512) self.res4_3 = basic_res_block(512, 512) # 256x4x16 self.pool = nn.AvgPool2d((2, 2), (2, 1), (0, 1)) # 512x2x16 self.conv5 = nn.Conv2d(512, 512, 2, 1, 0) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU(True) # 512x1x16 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.res1(self.relu1(self.conv1(input))) x = self.res2_2(self.res2_1(x)) x = self.res3_3(self.res3_2(self.res3_1(x))) x = self.res4_3(self.res4_2(self.res4_1(x))) x = self.pool(x) conv = self.relu5(self.bn5(self.conv5(x))) # print(conv.size()) b, c, h, w = conv.size() assert h == 1, "the height of conv must be 1" conv = conv.squeeze(2) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output if __name__ == '__main__': pass
import torch.nn as nnfrom collections import OrderedDict class BidirectionalLSTM(nn.Module): def __init__(self, nIn, nHidden, nOut): super(BidirectionalLSTM, self).__init__() self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True) self.embedding = nn.Linear(nHidden * 2, nOut) def forward(self, input): recurrent, _ = self.rnn(input) T, b, h = recurrent.size() t_rec = recurrent.view(T * b, h) output = self.embedding(t_rec) # [T * b, nOut] output = output.view(T, b, -1) return output class CRNN(nn.Module): def __init__(self, imgH, nc, nclass, nh, leakyRelu=False): super(CRNN, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' # 1x32x128 self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1) self.relu1 = nn.ReLU(True) self.pool1 = nn.MaxPool2d(2, 2) # 64x16x64 self.conv2 = nn.Conv2d(64, 128, 3, 1, 1) self.relu2 = nn.ReLU(True) self.pool2 = nn.MaxPool2d(2, 2) # 128x8x32 self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1) self.bn3 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU(True) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1) self.relu3_2 = nn.ReLU(True) self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 256x4x16 self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1) self.bn4 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU(True) self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1) self.relu4_2 = nn.ReLU(True) self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 512x2x16 self.conv5 = nn.Conv2d(512, 512, 2, 1, 0) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU(True) # 512x1x16 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.pool1(self.relu1(self.conv1(input))) x = self.pool2(self.relu2(self.conv2(x))) x = self.pool3(self.relu3_2(self.conv3_2(self.relu3_1(self.bn3(self.conv3_1(x)))))) x = self.pool4(self.relu4_2(self.conv4_2(self.relu4_1(self.bn4(self.conv4_1(x)))))) conv = self.relu5(self.bn5(self.conv5(x))) # print(conv.size()) b, c, h, w = conv.size() assert h == 1, "the height of conv must be 1" conv = conv.squeeze(2) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output class CRNN_v2(nn.Module): def __init__(self, imgH, nc, nclass, nh, leakyRelu=False): super(CRNN_v2, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' # 1x32x128 self.conv1_1 = nn.Conv2d(nc, 32, 3, 1, 1) self.bn1_1 = nn.BatchNorm2d(32) self.relu1_1 = nn.ReLU(True) self.conv1_2 = nn.Conv2d(32, 64, 3, 1, 1) self.bn1_2 = nn.BatchNorm2d(64) self.relu1_2 = nn.ReLU(True) self.pool1 = nn.MaxPool2d(2, 2) # 64x16x64 self.conv2_1 = nn.Conv2d(64, 64, 3, 1, 1) self.bn2_1 = nn.BatchNorm2d(64) self.relu2_1 = nn.ReLU(True) self.conv2_2 = nn.Conv2d(64, 128, 3, 1, 1) self.bn2_2 = nn.BatchNorm2d(128) self.relu2_2 = nn.ReLU(True) self.pool2 = nn.MaxPool2d(2, 2) # 128x8x32 self.conv3_1 = nn.Conv2d(128, 96, 3, 1, 1) self.bn3_1 = nn.BatchNorm2d(96) self.relu3_1 = nn.ReLU(True) self.conv3_2 = nn.Conv2d(96, 192, 3, 1, 1) self.bn3_2 = nn.BatchNorm2d(192) self.relu3_2 = nn.ReLU(True) self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 192x4x32 self.conv4_1 = nn.Conv2d(192, 128, 3, 1, 1) self.bn4_1 = nn.BatchNorm2d(128) self.relu4_1 = nn.ReLU(True) self.conv4_2 = nn.Conv2d(128, 256, 3, 1, 1) self.bn4_2 = nn.BatchNorm2d(256) self.relu4_2 = nn.ReLU(True) self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) # 256x2x32 self.bn5 = nn.BatchNorm2d(256) # 256x2x32 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.pool1(self.relu1_2(self.bn1_2(self.conv1_2(self.relu1_1(self.bn1_1(self.conv1_1(input))))))) x = self.pool2(self.relu2_2(self.bn2_2(self.conv2_2(self.relu2_1(self.bn2_1(self.conv2_1(x))))))) x = self.pool3(self.relu3_2(self.bn3_2(self.conv3_2(self.relu3_1(self.bn3_1(self.conv3_1(x))))))) x = self.pool4(self.relu4_2(self.bn4_2(self.conv4_2(self.relu4_1(self.bn4_1(self.conv4_1(x))))))) conv = self.bn5(x) # print(conv.size()) b, c, h, w = conv.size() assert h == 2, "the height of conv must be 2" conv = conv.reshape([b,c*h,w]) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output def conv3x3(nIn, nOut, stride=1): # "3x3 convolution with padding" return nn.Conv2d( nIn, nOut, kernel_size=3, stride=stride, padding=1, bias=False ) class basic_res_block(nn.Module): def __init__(self, nIn, nOut, stride=1, downsample=None): super( basic_res_block, self ).__init__() m = OrderedDict() m['conv1'] = conv3x3( nIn, nOut, stride ) m['bn1'] = nn.BatchNorm2d( nOut ) m['relu1'] = nn.ReLU( inplace=True ) m['conv2'] = conv3x3( nOut, nOut ) m['bn2'] = nn.BatchNorm2d( nOut ) self.group1 = nn.Sequential( m ) self.relu = nn.Sequential( nn.ReLU( inplace=True ) ) self.downsample = downsample def forward(self, x): if self.downsample is not None: residual = self.downsample( x ) else: residual = x out = self.group1( x ) + residual out = self.relu( out ) return out class CRNN_res(nn.Module): def __init__(self, imgH, nc, nclass, nh): super(CRNN_res, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1) self.relu1 = nn.ReLU(True) self.res1 = basic_res_block(64, 64) # 1x32x128 down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128)) self.res2_1 = basic_res_block( 64, 128, 2, down1 ) self.res2_2 = basic_res_block(128,128) # 64x16x64 down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256)) self.res3_1 = basic_res_block(128, 256, 2, down2) self.res3_2 = basic_res_block(256, 256) self.res3_3 = basic_res_block(256, 256) # 128x8x32 down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=(2, 1), bias=False),nn.BatchNorm2d(512)) self.res4_1 = basic_res_block(256, 512, (2, 1), down3) self.res4_2 = basic_res_block(512, 512) self.res4_3 = basic_res_block(512, 512) # 256x4x16 self.pool = nn.AvgPool2d((2, 2), (2, 1), (0, 1)) # 512x2x16 self.conv5 = nn.Conv2d(512, 512, 2, 1, 0) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU(True) # 512x1x16 self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features x = self.res1(self.relu1(self.conv1(input))) x = self.res2_2(self.res2_1(x)) x = self.res3_3(self.res3_2(self.res3_1(x))) x = self.res4_3(self.res4_2(self.res4_1(x))) x = self.pool(x) conv = self.relu5(self.bn5(self.conv5(x))) # print(conv.size()) b, c, h, w = conv.size() assert h == 1, "the height of conv must be 1" conv = conv.squeeze(2) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output if __name__ == '__main__': pass 标签:512,nn,conv,True,self,算法,ocr,优化,Conv2d From: https://www.cnblogs.com/wajava/p/18111090