使用B导的yolov7代码部署,代码地址:https://github.com/bubbliiiing/yolov7-pytorch 模型的的训练看B导即可,up主地址:Bubbliiiing的博客_CSDN博客-神经网络学习小记录,睿智的目标检测,有趣的数据结构算法领域博主 模型训练完成之后,在predict.py中设置mode = "export_onnx"即可生成。 注意,此处有个坑,B导的yolov7代码输出的onnx只有1*class.size*20*20这一层,需要在nets/yolo.py文件中修改一下。 修改之前:(在yolo.py的最下面) #---------------------------------------------------# # 第三个特征层 # y3=(batch_size, 36, 80, 80) #---------------------------------------------------# out2 = self.yolo_head_P3(P3) #---------------------------------------------------# # 第二个特征层 # y2=(batch_size, 36, 40, 40) #---------------------------------------------------# out1 = self.yolo_head_P4(P4) #---------------------------------------------------# # 第一个特征层 # y1=(batch_size, 36, 20, 20) #---------------------------------------------------# out0 = self.yolo_head_P5(P5) return [out0, out1, out2] 修改之后: #---------------------------------------------------# # 第三个特征层 # y3=(batch_size, 36, 80, 80) #---------------------------------------------------# out2 = self.yolo_head_P3(P3) bs, _, ny, nx = out2.shape # x(bs,255,20,20) to x(bs,3,20,20,85) out2 = out2.view(bs, 3, 12, ny, nx).permute(0, 1, 3, 4, 2).contiguous() out2 = out2.view(bs * 3 * ny * nx, 12).contiguous() #---------------------------------------------------# # 第二个特征层 # y2=(batch_size, 36, 40, 40) #---------------------------------------------------# out1 = self.yolo_head_P4(P4) bs, _, ny, nx = out1.shape out1 = out1.view(bs, 3, 12, ny, nx).permute(0, 1, 3, 4, 2).contiguous() out1 = out1.view(bs * 3 * ny * nx, 12).contiguous() #---------------------------------------------------# # 第一个特征层 # y1=(batch_size, 36, 20, 20) #---------------------------------------------------# out0 = self.yolo_head_P5(P5) bs, _, ny, nx = out0.shape out0 = out0.view(bs, 3, 12, ny, nx).permute(0, 1, 3, 4, 2).contiguous() out0 = out0.view(bs * 3 * ny * nx, 12).contiguous() #return [out0, out1, out2] return torch.cat((out2,out1,out0)) 这样我们可以看到输出的shape已经变成了25200*12了! 解释下这个数据:网络原本的输出是1*36*80*80,1*36*40*40,1*36*20*20,36是因为我的模型的类别数为7,36=(5+7)*3,5为四个位置信息加置信度,3为anchor数,经过上述代码的操作就把所有的输出拼接起来了,结果为25200*12,一共有25200个预测结果与每个结果对应12个信息。 之后我们就可以利用生成的onnx在vs studio中进行部署啦。 main.cpp: #include "yolo.h" #include <iostream> #include<opencv2//opencv.hpp> #include<math.h> using namespace std; using namespace cv; using namespace dnn; int main() { string img_path = "3.jpg"; string model_path = "models.onnx"; Yolo test; Net net; //加载onnx模型 if (test.readModel(net, model_path, true)) { cout << "read net ok!" << endl; } else { return -1; } //生成随机颜色 vector<Scalar> color; srand(time(0)); for (int i = 0; i < 80; i++) { int b = rand() % 256; int g = rand() % 256; int r = rand() % 256; color.push_back(Scalar(b, g, r)); } vector<Output> result; Mat img = imread(img_path); if (test.Detect(img, net, result)) { test.drawPred(img, result, color); } else { cout << "Detect Failed!" << endl; } system("pause"); return 0; } yolo.h: #pragma once #include<iostream> #include<math.h> #include<opencv2/opencv.hpp> struct Output { int id;//结果类别id float confidence;//结果置信度 cv::Rect box;//矩形框 }; class Yolo { public: Yolo() {} ~Yolo(){} bool readModel(cv::dnn::Net& net, std::string& netPath, bool isCuda); bool Detect(cv::Mat& SrcImg, cv::dnn::Net& net, std::vector<Output>& output); void drawPred(cv::Mat& img, std::vector<Output> result, std::vector<cv::Scalar> color); private: //计算归一化函数 float Sigmoid(float x) { return static_cast<float>(1.f / (1.f + exp(-x))); } //anchors const float netAnchors[3][6] = { { 12.0, 16.0, 19.0, 36.0, 40.0, 28.0 },{ 36.0, 75.0, 76.0, 55.0, 72.0, 146.0 },{ 142.0, 110.0, 192.0, 243.0, 459.0, 401.0 } }; //stride const float netStride[3] = { 8.0, 16.0, 32.0 }; const int netWidth = 640; //网络模型输入大小 const int netHeight = 640; float nmsThreshold = 0.45; float boxThreshold = 0.35; float classThreshold = 0.35; //我的数据集类名 std::vector<std::string> className = { "scratch","Exposed components","Reverse printing","Missing print","6.8CA","D7","TB20K"}; }; yolo.cpp: #include "Yolo.h" using namespace std; using namespace cv; using namespace dnn; bool Yolo::readModel(Net& net, string& netPath, bool isCuda = false) { try { net = readNetFromONNX(netPath); } catch (const std::exception&) { return false; } //cuda if (isCuda) { net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); } //cpu else { net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT); net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); } return true; } bool Yolo::Detect(Mat& SrcImg, Net& net, vector<Output>& output) { Mat blob; int col = SrcImg.cols; int row = SrcImg.rows; int maxLen = MAX(col, row); Mat netInputImg = SrcImg.clone(); if (maxLen > 1.2 * col || maxLen > 1.2 * row) { Mat resizeImg = Mat::zeros(maxLen, maxLen, CV_8UC3); SrcImg.copyTo(resizeImg(Rect(0, 0, col, row))); netInputImg = resizeImg; } blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false); //blob = blobFromImage(netInputImg, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0,0), true, false);//如果训练集未对图片进行减去均值操作,则需要设置为这句 //blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false); net.setInput(blob); std::vector<cv::Mat> netOutputImg; //vector<string> outputLayerName{"345","403", "461","output" }; //net.forward(netOutputImg, outputLayerName[3]); //获取output的输出 net.forward(netOutputImg, net.getUnconnectedOutLayersNames()); std::vector<int> classIds;//结果id数组 std::vector<float> confidences;//结果每个id对应置信度数组 std::vector<cv::Rect> boxes;//每个id矩形框 float ratio_h = (float)netInputImg.rows / netHeight; float ratio_w = (float)netInputImg.cols / netWidth; int net_width = className.size() + 5; //输出的网络宽度是类别数+5 float* pdata = (float*)netOutputImg[0].data; for (int stride = 0; stride < 3; stride++) { //stride int grid_x = (int)(netWidth / netStride[stride]); int grid_y = (int)(netHeight / netStride[stride]); for (int anchor = 0; anchor < 3; anchor++) { //anchors const float anchor_w = netAnchors[stride][anchor * 2]; const float anchor_h = netAnchors[stride][anchor * 2 + 1]; for (int i = 0; i < grid_x; i++) { for (int j = 0; j < grid_y; j++) { float box_score = Sigmoid(pdata[4]);//获取每一行的box框中含有某个物体的概率 if (box_score > boxThreshold) { //为了使用minMaxLoc(),将85长度数组变成Mat对象 cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5); Point classIdPoint; double max_class_socre; //cout << scores << endl; minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint); max_class_socre = Sigmoid((float)max_class_socre); if (max_class_socre > classThreshold) { //rect [x,y,w,h] float x = (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride]; //x float y = (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride]; //y float w = powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w; //w float h = powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h; //h int left = (x - 0.5 * w) * ratio_w; int top = (y - 0.5 * h) * ratio_h; classIds.push_back(classIdPoint.x); confidences.push_back(max_class_socre * box_score); boxes.push_back(Rect(left, top, int(w * ratio_w), int(h * ratio_h))); } } pdata += net_width;//指针移到下一行 } } } } vector<int> nms_result; dnn::NMSBoxes(boxes, confidences, classThreshold, nmsThreshold, nms_result); for (int i = 0; i < nms_result.size(); i++) { int idx = nms_result[i]; Output result; result.id = classIds[idx]; result.confidence = confidences[idx]; result.box = boxes[idx]; output.push_back(result); } if (output.size()) return true; else return false; } void Yolo::drawPred(Mat& img, vector<Output> result, vector<Scalar> color) { for (int i = 0; i < result.size(); i++) { int left, top; left = result[i].box.x; top = result[i].box.y; int color_num = i; rectangle(img, result[i].box, color[result[i].id], 2, 8); string label = className[result[i].id] + ":" + to_string(result[i].confidence); int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); //rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED); putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2); } imshow("res", img); waitKey(); } 预测结果: 大功告成啦,不得不说yolov7的效果相当的好,也感谢B导大大啦
标签:yolov7,dnn,int,float,c++,vector,result,net,cv From: https://www.cnblogs.com/kn-zheng/p/18025028