首页 > 编程语言 >class080 状压dp-上【算法】

class080 状压dp-上【算法】

时间:2023-12-21 14:08:02浏览次数:44  
标签:false nums class080 sum 状压 int 火柴 dp


class080 状压dp-上【算法】

算法讲解080【必备】状压dp-上

class080 状压dp-上【算法】_算法

class080 状压dp-上【算法】_算法_02

Code1 464. 我能赢吗

// 我能赢吗
// 给定两个整数n和m
// 两个玩家可以轮流从公共整数池中抽取从1到n的整数(不放回)
// 抽取的整数会累加起来(两个玩家都算)
// 谁在自己的回合让累加和 >= m,谁获胜
// 若先出手的玩家能稳赢则返回true,否则返回false
// 假设两位玩家游戏时都绝顶聪明,可以全盘为自己打算
// 测试链接 : https://leetcode.cn/problems/can-i-win/

package class080;

// 我能赢吗
// 给定两个整数n和m
// 两个玩家可以轮流从公共整数池中抽取从1到n的整数(不放回)
// 抽取的整数会累加起来(两个玩家都算)
// 谁在自己的回合让累加和 >= m,谁获胜
// 若先出手的玩家能稳赢则返回true,否则返回false
// 假设两位玩家游戏时都绝顶聪明,可以全盘为自己打算
// 测试链接 : https://leetcode.cn/problems/can-i-win/
public class Code01_CanIWin {

	public static boolean canIWin(int n, int m) {
		if (m == 0) {
			// 来自题目规定
			return true;
		}
		if (n * (n + 1) / 2 < m) {
			// 如果1~n数字全加起来
			// 累加和和是n * (n+1) / 2,都小于m
			// 那么不会有赢家,也就意味着先手不会获胜
			return false;
		}
		// dp[status] == 0 代表没算过
		// dp[status] == 1 算过,答案是true
		// dp[status] == -1 算过,答案是false
		int[] dp = new int[1 << (n + 1)];
		return f(n, (1 << (n + 1)) - 1, m, dp);
	}

	// 如果1~7范围的数字都能选,那么status的状态为:
	// 1 1 1 1 1 1 1 1
	// 7 6 5 4 3 2 1 0
	// 0位弃而不用
	// 如果1~7范围的数字,4、2已经选了不能再选,那么status的状态为:
	// 1 1 1 0 1 0 1 1
	// 7 6 5 4 3 2 1 0
	// 0位弃而不用
	// f的含义 :
	// 数字范围1~n,当前的先手,面对status给定的数字状态
	// 在累加和还剩rest的情况下
	// 返回当前的先手能不能赢,能赢返回true,不能赢返回false
	public static boolean f(int n, int status, int rest, int[] dp) {
		if (rest <= 0) {
			return false;
		}
		if (dp[status] != 0) {
			return dp[status] == 1;
		}
		// rest > 0
		boolean ans = false;
		for (int i = 1; i <= n; i++) {
			// 考察所有数字,但是不能选择之前选了的数字
			if ((status & (1 << i)) != 0 && !f(n, (status ^ (1 << i)), rest - i, dp)) {
				ans = true;
				break;
			}
		}
		dp[status] = ans ? 1 : -1;
		return ans;
	}

}

Code2 473. 火柴拼正方形

// 火柴拼正方形
// 你将得到一个整数数组 matchsticks
// 其中 matchsticks[i] 是第 i 个火柴棒的长度
// 你要用 所有的火柴棍 拼成一个正方形
// 你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次
// 如果你能拼出正方形,则返回 true ,否则返回 false
// 测试链接 : https://leetcode.cn/problems/matchsticks-to-square/

f(int status, int cur, int rest)
对于每一个没使用的火柴,(status&(1<<i))!=0
cur+nums[i]<=limit,并且不超过边长限制
if(cur+nums[i]==0)
	f(status^(1<<i),0,rest-1)
else
	f(status^(1<<i),cur+nums[i],rest)
package class080;

// 火柴拼正方形
// 你将得到一个整数数组 matchsticks
// 其中 matchsticks[i] 是第 i 个火柴棒的长度
// 你要用 所有的火柴棍 拼成一个正方形
// 你 不能折断 任何一根火柴棒,但你可以把它们连在一起,而且每根火柴棒必须 使用一次
// 如果你能拼出正方形,则返回 true ,否则返回 false
// 测试链接 : https://leetcode.cn/problems/matchsticks-to-square/
public class Code02_MatchsticksToSquare {

	public static boolean makesquare(int[] nums) {
		int sum = 0;
		for (int num : nums) {
			sum += num;
		}
		if (sum % 4 != 0) {
			return false;
		}
		int n = nums.length;
		int[] dp = new int[1 << n];
		return f(nums, sum / 4, (1 << n) - 1, 0, 4, dp);
	}

	// limit : 每条边规定的长度
	// status : 表示哪些数字还可以选
	// cur : 当前要解决的这条边已经形成的长度
	// rest : 一共还有几条边没有解决
	// 返回 : 能否用光所有火柴去解决剩下的所有边
	// 因为调用子过程之前,一定保证每条边累加起来都不超过limit
	// 所以status是决定cur和rest的,关键可变参数只有status
	public static boolean f(int[] nums, int limit, int status, int cur, int rest, int[] dp) {
		if (rest == 0) {
			return status == 0;
		}
		if (dp[status] != 0) {
			return dp[status] == 1;
		}
		boolean ans = false;
		for (int i = 0; i < nums.length; i++) {
			// 考察每一根火柴,只能使用状态为1的火柴
			if ((status & (1 << i)) != 0 && cur + nums[i] <= limit) {
				if (cur + nums[i] == limit) {
					ans = f(nums, limit, status ^ (1 << i), 0, rest - 1, dp);
				} else {
					ans = f(nums, limit, status ^ (1 << i), cur + nums[i], rest, dp);
				}
				if (ans) {
					break;
				}
			}
		}
		dp[status] = ans ? 1 : -1;
		return ans;
	}

}

Code3 698. 划分为k个相等的子集

// 划分为k个相等的子集
// 给定一个整数数组 nums 和一个正整数 k,
// 找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
// 测试链接 : https://leetcode.cn/problems/partition-to-k-equal-sum-subsets/

package class080;

import java.util.Arrays;

// 划分为k个相等的子集
// 给定一个整数数组  nums 和一个正整数 k,
// 找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
// 测试链接 : https://leetcode.cn/problems/partition-to-k-equal-sum-subsets/
public class Code03_PartitionToKEqualSumSubsets {

	// 状压dp的解法
	// 这是最正式的解
	public static boolean canPartitionKSubsets1(int[] nums, int k) {
		int sum = 0;
		for (int num : nums) {
			sum += num;
		}
		if (sum % k != 0) {
			return false;
		}
		int n = nums.length;
		int[] dp = new int[1 << n];
		return f1(nums, sum / k, (1 << n) - 1, 0, k, dp);
	}

	// 就是题目2的递归函数
	public static boolean f1(int[] nums, int limit, int status, int cur, int rest, int[] dp) {
		if (rest == 0) {
			return status == 0;
		}
		if (dp[status] != 0) {
			return dp[status] == 1;
		}
		boolean ans = false;
		for (int i = 0; i < nums.length; i++) {
			if ((status & (1 << i)) != 0 && cur + nums[i] <= limit) {
				if (cur + nums[i] == limit) {
					ans = f1(nums, limit, status ^ (1 << i), 0, rest - 1, dp);
				} else {
					ans = f1(nums, limit, status ^ (1 << i), cur + nums[i], rest, dp);
				}
				if (ans) {
					break;
				}
			}
		}
		dp[status] = ans ? 1 : -1;
		return ans;
	}

	// 纯暴力的递归(不做任何动态规划),利用良好的剪枝策略,可以做到非常好的效率
	// 但这并不是正式的解,如果数据设计的很苛刻,是通过不了的
	public static boolean canPartitionKSubsets2(int[] nums, int k) {
		int sum = 0;
		for (int num : nums) {
			sum += num;
		}
		if (sum % k != 0) {
			return false;
		}
		int n = nums.length;
		Arrays.sort(nums);
		return f2(new int[k], sum / k, nums, n - 1);
	}

	// group里面是各个集合已经有的累加和
	// 随着递归的展开,group里的累加和会变化
	// 所以这是一个带路径的递归,而且路径信息比较复杂(group数组)
	// 无法改成动态规划,但是利用剪枝策略可以通过
	// group[0....index]这些数字,填入每个集合,一定要都使用
	// 每个集合的累加和一定都要是target,返回能不能做到
	public static boolean f2(int[] group, int target, int[] nums, int index) {
		if (index < 0) {
			return true;
		}
		int num = nums[index];
		int len = group.length;
		for (int i = 0; i < len; i++) {
			if (group[i] + num <= target) {
				// 当前数字num放进i号集合
				group[i] += num;
				if (f2(group, target, nums, index - 1)) {
					return true;
				}
				// 递归完成后将路径还原
				group[i] -= num;
				while (i + 1 < group.length && group[i] == group[i + 1]) {
					i++;
				}
			}
		}
		return false;
	}

}

Code4 P1171 售货员的难题

// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过

package class080;

// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

// 正常来说把MAXN改成20能通过,实现是正确的
// 问题是卡空间,而且c++的实现不卡空间,就卡java的实现
// 但如果把MAXN改成19,会有一个测试用例通过不了
// 那就差这么一点空间...看不起java是吗?
// 好,你歧视java实现,那就别怪我了
// 完全能通过的版本看Code04_TSP2的实现
public class Code04_TSP1 {

	public static int MAXN = 19;

	public static int[][] graph = new int[MAXN][MAXN];

	public static int[][] dp = new int[1 << MAXN][MAXN];

	public static int n;

	public static void build() {
		for (int s = 0; s < (1 << n); s++) {
			for (int i = 0; i < n; i++) {
				dp[s][i] = -1;
			}
		}
	}

	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		StreamTokenizer in = new StreamTokenizer(br);
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			n = (int) in.nval;
			build();
			for (int i = 0; i < n; i++) {
				for (int j = 0; j < n; j++) {
					in.nextToken();
					graph[i][j] = (int) in.nval;
				}
			}
			out.println(compute());
		}
		out.flush();
		out.close();
		br.close();
	}

	public static int compute() {
		return f(1, 0);
	}

	// s : 村里走没走过的状态,1走过了不要再走了,0可以走
	// i : 目前在哪个村
	public static int f(int s, int i) {
		if (s == (1 << n) - 1) {
			// n : 000011111
			return graph[i][0];
		}
		if (dp[s][i] != -1) {
			return dp[s][i];
		}
		int ans = Integer.MAX_VALUE;
		for (int j = 0; j < n; j++) {
			// 0...n-1这些村,都看看是不是下一个落脚点
			if ((s & (1 << j)) == 0) {
				ans = Math.min(ans, graph[i][j] + f(s | (1 << j), j));
			}
		}
		dp[s][i] = ans;
		return ans;
	}

}
package class080;

// 售货员的难题 - TSP问题
// 某乡有n个村庄(1<=n<=20),有一个售货员,他要到各个村庄去售货
// 各村庄之间的路程s(1<=s<=1000)是已知的
// 且A村到B村的路程,与B到A的路大多不同(有向带权图)
// 为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,
// 假设商店所在的村庄为1
// 他不知道选择什么样的路线才能使所走的路程最短
// 请你帮他选择一条最短的路
// 测试链接 : https://www.luogu.com.cn/problem/P1171
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

// 卡空间是吧?绕一下!
public class Code04_TSP2 {

	public static int MAXN = 19;

	public static int[] start = new int[MAXN];

	public static int[] back = new int[MAXN];

	// 这个图中,其实是不算起始村的,其他村庄彼此到达的路径长度
	public static int[][] graph = new int[MAXN][MAXN];

	// 不算起始村庄的
	public static int[][] dp = new int[1 << MAXN][MAXN];

	public static int n;

	public static void build() {
		for (int s = 0; s < (1 << n); s++) {
			for (int i = 0; i < n; i++) {
				dp[s][i] = -1;
			}
		}
	}

	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		StreamTokenizer in = new StreamTokenizer(br);
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			n = (int) in.nval - 1;
			build();
			in.nextToken();
			for (int i = 0; i < n; i++) {
				in.nextToken();
				start[i] = (int) in.nval;
			}
			for (int i = 0; i < n; i++) {
				in.nextToken();
				back[i] = (int) in.nval;
				for (int j = 0; j < n; j++) {
					in.nextToken();
					graph[i][j] = (int) in.nval;
				}
			}
			out.println(compute());
		}
		out.flush();
		out.close();
		br.close();
	}

	public static int compute() {
		int ans = Integer.MAX_VALUE;
		// 起始村无编号
		for (int i = 0; i < n; i++) {
			// 起始村 -> i号村  +  i号村出发所有村子都走最终回到起始村
			ans = Math.min(ans, start[i] + f(1 << i, i));
		}
		return ans;
	}

	// s : 不包含起始村的
	public static int f(int s, int i) {
		if (s == (1 << n) - 1) {
			return back[i];
		}
		if (dp[s][i] != -1) {
			return dp[s][i];
		}
		int ans = Integer.MAX_VALUE;
		for (int j = 0; j < n; j++) {
			if ((s & (1 << j)) == 0) {
				ans = Math.min(ans, graph[i][j] + f(s | (1 << j), j));
			}
		}
		dp[s][i] = ans;
		return ans;
	}

}

2023-12-01 20:09:40


标签:false,nums,class080,sum,状压,int,火柴,dp
From: https://blog.51cto.com/u_15719556/8923326

相关文章

  • class081 状压dp-下【算法】
    class081状压dp-下【算法】算法讲解081【必备】状压dp-下Code11434.每个人戴不同帽子的方案数//每个人戴不同帽子的方案数//总共有n个人和40种不同的帽子,帽子编号从1到40//给你一个整数列表的列表hats,其中hats[i]是第i个人所有喜欢帽子的列表//请你给每个人......
  • class073 背包dp-01背包、有依赖的背包【算法】
    class073背包dp-01背包、有依赖的背包【算法】算法讲解073【必备】背包dp-01背包、有依赖的背包code1P1048[NOIP2005普及组]采药//01背包(模版)//给定一个正数t,表示背包的容量//有m个货物,每个货物可以选择一次//每个货物有自己的体积costs[i]和价值values[i]//返回在......
  • class074 背包dp-分组背包、完全背包【算法】
    class074背包dp-分组背包、完全背包【算法】算法讲解074【必备】背包dp-分组背包、完全背包code1P1757通天之分组背包//分组背包(模版)//给定一个正数m表示背包的容量,有n个货物可供挑选//每个货物有自己的体积(容量消耗)、价值(获得收益)、组号(分组)//同一个组的物品只......
  • 线性DP
    线性DP例题:POJ2279思考:考虑dp_{i,j,k}表示第i行,第j列,安排k去站的方案数。错误原因:安排k去站但是可能会造成重复选择k。正解:考虑dp_{a1,a2,a3,a4,a5}表示各排从左边起分别站了a1,a2,a3,a4,a5个人时,合影方案数。疑惑:Q1.为什么不用考虑某个位置究竟站的......
  • Flink处理函数解析(ProcessFunction和KeyedProcessFunction)
    Flink中的处理函数(ProcessFunction和KeyedProcessFunction)在对于数据进行颗粒化的精确计算时使用较多,处理函数提供了一个定时服务(TimerService),可以向未来注册一个定时服务,我们可以把它理解为一个闹钟,当闹钟响起时,就调用ProcessFunction中的onTimer()方法,会对数据进行一些计算。我......
  • 金牌导航-数据结构优化DP
    数据结构优化DP例题A题解设\(f_{i,j}\)表示以第\(i\)位为结尾,长度为\(j\)的严格单调上升子序列的数量。那么显然有\(f_{i,j}=\sum_{k=1}^{i-1}f_{k,j-1}\times(a_k<a_i)\)然后发现这玩应\(O(n^2m)\)直接寄掉了。考虑优化。发现只有当\(a_k<a_i\)时才会有贡献。......
  • TQX 的 DP AAgain!
    闲话:这确实抽象,将所有人给干离线了……不如叫做TQX的离线DPQwQDP基本思路就是找一个比较好的能够描绘问题的状态,想怎么转移,再进行优化。--TQX背包DPloj6089.小Y的背包计数问题根号分治优化背包,大概就是利用\(cnt\timessiz\gecap\)将多重变为完全,然后统......
  • wordpress博客系统
    wordpress博客系统LNMP:Linux+nginx+mysql+php一个操作系统+web网站+一个数据库存放数据+后端编程语言基于红帽操作系统来搭建1.需要一个本地yum仓库[root@serveryum.repos.d]#vimlocal.repo[local]name=localbaseurl=file:///mediaenabled=1gpgcheck=0[root@ser......
  • subprocess.CalledProcessError: Command ‘[‘ninja‘, ‘-v‘]‘ returned non-zero
    一、原因pytorch版本大于1.5二、解决1、降低pytorch版本将pytorch版本降到1.5以下2、禁用ninjiapytorch默认使用ninjia作为backend,将其禁用。替换为以下代码setup(...,cmdclass={#'build_ext':BuildExtension,'build_ext':BuildExtensi......
  • 宝塔面板搭建部署wordpress个人网站实现无公网即可远程访问(小白建站福音!!)
    WordPress是一个非常灵活和强大的博客建站平台,适用于各种不同类型的网站建设需求。简单几步实现宝塔面板结合cpolar工具实现无公网远程访问,无需云服务器即可发布自己的网站到公网访问1.环境安装wordpress运行需要PHP环境,我们在宝塔商店中我们搜索PHP8.0版本安装 然后安......