首页 > 编程语言 >class073 背包dp-01背包、有依赖的背包【算法】

class073 背包dp-01背包、有依赖的背包【算法】

时间:2023-12-21 14:04:34浏览次数:35  
标签:背包 cost target class073 nums int sum 01 dp


class073 背包dp-01背包、有依赖的背包【算法】

算法讲解073【必备】背包dp-01背包、有依赖的背包

class073 背包dp-01背包、有依赖的背包【算法】_算法

code1 P1048 [NOIP2005 普及组] 采药

// 01背包(模版)
// 给定一个正数t,表示背包的容量
// 有m个货物,每个货物可以选择一次
// 每个货物有自己的体积costs[i]和价值values[i]
// 返回在不超过总容量的情况下,怎么挑选货物能达到价值最大
// 返回最大的价值
// 测试链接 : https://www.luogu.com.cn/problem/P1048
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

dp[i][j]:编号1…i的物品自由选择,容量不超过j的最大价值
①不要i号物品,dp[i-1][j]
②要i号物品,dp[i-1][j-cost[i]]+val[i],注意j-cost[i]不能是负数
二者取较大值

第0行:0
返回dp[n][t]

package class073;

// 01背包(模版)
// 给定一个正数t,表示背包的容量
// 有m个货物,每个货物可以选择一次
// 每个货物有自己的体积costs[i]和价值values[i]
// 返回在不超过总容量的情况下,怎么挑选货物能达到价值最大
// 返回最大的价值
// 测试链接 : https://www.luogu.com.cn/problem/P1048
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;

public class Code01_01Knapsack {

	public static int MAXM = 101;

	public static int MAXT = 1001;

	public static int[] cost = new int[MAXM];

	public static int[] val = new int[MAXM];

	public static int[] dp = new int[MAXT];

	public static int t, n;

	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		StreamTokenizer in = new StreamTokenizer(br);
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			t = (int) in.nval;
			in.nextToken();
			n = (int) in.nval;
			for (int i = 1; i <= n; i++) {
				in.nextToken();
				cost[i] = (int) in.nval;
				in.nextToken();
				val[i] = (int) in.nval;
			}
			out.println(compute2());
		}
		out.flush();
		out.close();
		br.close();
	}

	// 严格位置依赖的动态规划
	// n个物品编号1~n,第i号物品的花费cost[i]、价值val[i]
	// cost、val数组是全局变量,已经把数据读入了
	public static int compute1() {
		int[][] dp = new int[n + 1][t + 1];
		for (int i = 1; i <= n; i++) {
			for (int j = 0; j <= t; j++) {
				// 不要i号物品
				dp[i][j] = dp[i - 1][j];
				if (j - cost[i] >= 0) {
					// 要i号物品
					dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - cost[i]] + val[i]);
				}
			}
		}
		return dp[n][t];
	}

	// 空间压缩
	public static int compute2() {
		Arrays.fill(dp, 0, t + 1, 0);
		for (int i = 1; i <= n; i++) {
			for (int j = t; j >= cost[i]; j--) {
				dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]);
			}
		}
		return dp[t];
	}

}

code2 bytedance-006. 夏季特惠

// 夏季特惠
// 某公司游戏平台的夏季特惠开始了,你决定入手一些游戏
// 现在你一共有X元的预算,平台上所有的 n 个游戏均有折扣
// 标号为 i 的游戏的原价a_i元,现价只要b_i元
// 也就是说该游戏可以优惠 a_i - b_i,并且你购买该游戏能获得快乐值为w_i
// 由于优惠的存在,你可能做出一些冲动消费导致最终买游戏的总费用超过预算
// 只要满足 : 获得的总优惠金额不低于超过预算的总金额
// 那在心理上就不会觉得吃亏。
// 现在你希望在心理上不觉得吃亏的前提下,获得尽可能多的快乐值。
// 测试链接 : https://leetcode.cn/problems/tJau2o/
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

package class073;

// 夏季特惠
// 某公司游戏平台的夏季特惠开始了,你决定入手一些游戏
// 现在你一共有X元的预算,平台上所有的 n 个游戏均有折扣
// 标号为 i 的游戏的原价a_i元,现价只要b_i元
// 也就是说该游戏可以优惠 a_i - b_i,并且你购买该游戏能获得快乐值为w_i
// 由于优惠的存在,你可能做出一些冲动消费导致最终买游戏的总费用超过预算
// 只要满足 : 获得的总优惠金额不低于超过预算的总金额
// 那在心理上就不会觉得吃亏。
// 现在你希望在心理上不觉得吃亏的前提下,获得尽可能多的快乐值。
// 测试链接 : https://leetcode.cn/problems/tJau2o/
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;

public class Code02_BuyGoodsHaveDiscount {

	public static int MAXN = 501;

	public static int MAXX = 100001;

	// 对于"一定要买的商品",直接买!
	// 只把"需要考虑的商品"放入cost、val数组
	public static int[] cost = new int[MAXN];

	public static long[] val = new long[MAXN];

	public static long[] dp = new long[MAXX];

	public static int n, m, x;

	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		StreamTokenizer in = new StreamTokenizer(br);
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			n = (int) in.nval;
			m = 1;
			in.nextToken();
			x = (int) in.nval;
			long ans = 0;
			long happy = 0;
			for (int i = 1, pre, cur, well; i <= n; i++) {
				// 原价
				in.nextToken(); pre = (int) in.nval;
				// 现价
				in.nextToken(); cur = (int) in.nval;
				// 快乐值
				in.nextToken(); happy = (long) in.nval;
				well = pre - cur - cur;
				// 如下是一件"一定要买的商品"
				// 预算 = 100,商品原价 = 10,打折后 = 3
				// 那么好处(well) = (10 - 3) - 3 = 4
				// 所以,可以认为这件商品把预算增加到了104!一定要买!
				// 如下是一件"需要考虑的商品"
				// 预算 = 104,商品原价 = 10,打折后 = 8
				// 那么好处(well) = (10 - 8) - 8 = -6
				// 所以,可以认为这件商品就花掉6元!
				// 也就是说以后花的不是打折后的值,是"坏处"
				if (well >= 0) {
					x += well;
					ans += happy;
				} else {
					cost[m] = -well;
					val[m++] = happy;
				}
			}
			ans += compute();
			out.println(ans);
		}
		out.flush();
		out.close();
		br.close();
	}

	public static long compute() {
		Arrays.fill(dp, 0, x + 1, 0);
		for (int i = 1; i <= m; i++) {
			for (int j = x; j >= cost[i]; j--) {
				dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]);
			}
		}
		return dp[x];
	}

}

code3 494. 目标和

// 目标和
// 给你一个非负整数数组 nums 和一个整数 target 。
// 向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数
// 可以构造一个表达式
// 例如nums=[2, 1],可以在2之前添加’+’ ,在1之前添加’-’
// 然后串联起来得到表达式 “+2-1” 。
// 返回可以通过上述方法构造的,运算结果等于 target 的不同表达式的数目
// 测试链接 : https://leetcode.cn/problems/target-sum/

划分为A B两集合
sumA-sumB=target
sumB=sum-sumA
sumA=(target+sum)/2

code1 递归
code2 记忆化搜索
code3 动态规划
code4 01背包

package class073;

import java.util.HashMap;

// 目标和
// 给你一个非负整数数组 nums 和一个整数 target 。
// 向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数
// 可以构造一个表达式
// 例如nums=[2, 1],可以在2之前添加'+' ,在1之前添加'-'
// 然后串联起来得到表达式 "+2-1" 。
// 返回可以通过上述方法构造的,运算结果等于 target 的不同表达式的数目
// 测试链接 : https://leetcode.cn/problems/target-sum/
public class Code03_TargetSum {

	// 普通尝试,暴力递归版
	public static int findTargetSumWays1(int[] nums, int target) {
		return f1(nums, target, 0, 0);
	}

	// nums[0...i-1]范围上,已经形成的累加和是sum
	// nums[i...]范围上,每个数字可以标记+或者-
	// 最终形成累加和为target的不同表达式数目
	public static int f1(int[] nums, int target, int i, int sum) {
		if (i == nums.length) {
			return sum == target ? 1 : 0;
		}
		return f1(nums, target, i + 1, sum + nums[i]) + f1(nums, target, i + 1, sum - nums[i]);
	}

	// 普通尝试,记忆化搜索版
	public static int findTargetSumWays2(int[] nums, int target) {
		// i, sum -> value(返回值 )
		HashMap<Integer, HashMap<Integer, Integer>> dp = new HashMap<>();
		return f2(nums, target, 0, 0, dp);
	}

	// 因为累加和可以为负数
	// 所以缓存动态规划表用哈希表
	public static int f2(int[] nums, int target, int i, int j, HashMap<Integer, HashMap<Integer, Integer>> dp) {
		if (i == nums.length) {
			return j == target ? 1 : 0;
		}
		if (dp.containsKey(i) && dp.get(i).containsKey(j)) {
			return dp.get(i).get(j);
		}
		int ans = f2(nums, target, i + 1, j + nums[i], dp) + f2(nums, target, i + 1, j - nums[i], dp);
		dp.putIfAbsent(i, new HashMap<>());
		dp.get(i).put(j, ans);
		return ans;
	}

	// 普通尝试
	// 严格位置依赖的动态规划
	// 平移技巧
	public static int findTargetSumWays3(int[] nums, int target) {
		int s = 0;
		for (int num : nums) {
			s += num;
		}
		if (target < -s || target > s) {
			return 0;
		}
		int n = nums.length;
		// -s ~ +s -> 2 * s + 1
		int m = 2 * s + 1;
		// 原本的dp[i][j]含义:
		// nums[0...i-1]范围上,已经形成的累加和是sum
		// nums[i...]范围上,每个数字可以标记+或者-
		// 最终形成累加和为target的不同表达式数目
		// 因为sum可能为负数,为了下标不出现负数,
		// "原本的dp[i][j]"由dp表中的dp[i][j + s]来表示
		// 也就是平移操作!
		// 一切"原本的dp[i][j]"一律平移到dp表中的dp[i][j + s]
		int[][] dp = new int[n + 1][m];
		// 原本的dp[n][target] = 1,平移!
		dp[n][target + s] = 1;
		for (int i = n - 1; i >= 0; i--) {
			for (int j = -s; j <= s; j++) {
				if (j + nums[i] + s < m) {
					// 原本是 : dp[i][j] = dp[i + 1][j + nums[i]]
					// 平移!
					dp[i][j + s] = dp[i + 1][j + nums[i] + s];
				}
				if (j - nums[i] + s >= 0) {
					// 原本是 : dp[i][j] += dp[i + 1][j - nums[i]]
					// 平移!
					dp[i][j + s] += dp[i + 1][j - nums[i] + s];
				}

			}
		}
		// 原本应该返回dp[0][0]
		// 平移!
		// 返回dp[0][0 + s]
		return dp[0][s];
	}

	// 新思路,转化为01背包问题
	// 思考1:
	// 虽然题目说nums是非负数组,但即使nums中有负数比如[3,-4,2]
	// 因为能在每个数前面用+或者-号
	// 所以[3,-4,2]其实和[3,4,2]会达成一样的结果
	// 所以即使nums中有负数,也可以把负数直接变成正数,也不会影响结果
	// 思考2:
	// 如果nums都是非负数,并且所有数的累加和是sum
	// 那么如果target>sum,很明显没有任何方法可以达到target,可以直接返回0
	// 思考3:
	// nums内部的数组,不管怎么+和-,最终的结果都一定不会改变奇偶性
	// 所以,如果所有数的累加和是sum,并且与target的奇偶性不一样
	// 那么没有任何方法可以达到target,可以直接返回0
	// 思考4(最重要):
	// 比如说给定一个数组, nums = [1, 2, 3, 4, 5] 并且 target = 3
	// 其中一个方案是 : +1 -2 +3 -4 +5 = 3
	// 该方案中取了正的集合为A = {1,3,5}
	// 该方案中取了负的集合为B = {2,4}
	// 所以任何一种方案,都一定有 sum(A) - sum(B) = target
	// 现在我们来处理一下这个等式,把左右两边都加上sum(A) + sum(B),那么就会变成如下:
	// sum(A) - sum(B) + sum(A) + sum(B) = target + sum(A) + sum(B)
	// 2 * sum(A) = target + 数组所有数的累加和
	// sum(A) = (target + 数组所有数的累加和) / 2
	// 也就是说,任何一个集合,只要累加和是(target + 数组所有数的累加和) / 2
	// 那么就一定对应一种target的方式
	// 比如非负数组nums,target = 1, nums所有数累加和是11
	// 求有多少方法组成1,其实就是求,有多少种子集累加和达到6的方法,(1+11)/2=6
	// 因为,子集累加和6 - 另一半的子集累加和5 = 1(target)
	// 所以有多少个累加和为6的不同集合,就代表有多少个target==1的表达式数量
	// 至此已经转化为01背包问题了
	public static int findTargetSumWays4(int[] nums, int target) {
		int sum = 0;
		for (int n : nums) {
			sum += n;
		}
		if (sum < target || ((target & 1) ^ (sum & 1)) == 1) {
			return 0;
		}
		return subsets(nums, (target + sum) >> 1);
	}

	// 求非负数组nums有多少个子序列累加和是t
	// 01背包问题(子集累加和严格是t) + 空间压缩
	// dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]]
	public static int subsets(int[] nums, int t) {
		if (t < 0) {
			return 0;
		}
		int[] dp = new int[t + 1];
		dp[0] = 1;
		for (int num : nums) { // i省略了
			for (int j = t; j >= num; j--) {
				dp[j] += dp[j - num];
			}
		}
		return dp[t];
	}

}

code4 1049. 最后一块石头的重量 II

// 最后一块石头的重量 II
// 有一堆石头,用整数数组 stones 表示
// 其中 stones[i] 表示第 i 块石头的重量。
// 每一回合,从中选出任意两块石头,然后将它们一起粉碎
// 假设石头的重量分别为 x 和 y,且 x <= y
// 那么粉碎的可能结果如下:
// 如果 x == y,那么两块石头都会被完全粉碎;
// 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x
// 最后,最多只会剩下一块 石头,返回此石头 最小的可能重量
// 如果没有石头剩下,就返回 0
// 测试链接 : https://leetcode.cn/problems/last-stone-weight-ii/

划分为A B两集合
划分为A B两集合
abs(sumA-sumB)小
sumB=sum-sumA
sumA与sum/2最接近

dp[i][j]:前i个数不超过j的最接近累加和
①dp[i-1][j]
②dp[i-1][j-nums[i]]+nums[i]
两者取较大值

package class073;

// 最后一块石头的重量 II
// 有一堆石头,用整数数组 stones 表示
// 其中 stones[i] 表示第 i 块石头的重量。
// 每一回合,从中选出任意两块石头,然后将它们一起粉碎
// 假设石头的重量分别为 x 和 y,且 x <= y
// 那么粉碎的可能结果如下:
// 如果 x == y,那么两块石头都会被完全粉碎;
// 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x
// 最后,最多只会剩下一块 石头,返回此石头 最小的可能重量
// 如果没有石头剩下,就返回 0
// 测试链接 : https://leetcode.cn/problems/last-stone-weight-ii/
public class Code04_LastStoneWeightII {

	public static int lastStoneWeightII(int[] nums) {
		int sum = 0;
		for (int num : nums) {
			sum += num;
		}
		// nums中随意选择数字
		// 累加和一定要 <= sum / 2
		// 又尽量接近
		int near = near(nums, sum / 2);
		return sum - near - near;
	}

	// 非负数组nums中,子序列累加和不超过t,但是最接近t的累加和是多少
	// 01背包问题(子集累加和尽量接近t) + 空间压缩
	public static int near(int[] nums, int t) {
		int[] dp = new int[t + 1];
		for (int num : nums) {
			for (int j = t; j >= num; j--) {
				// dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-nums[i]]+nums[i])
				dp[j] = Math.max(dp[j], dp[j - num] + num);
			}
		}
		return dp[t];
	}

}

code5 购物单

// 有依赖的背包(模版)
// 物品分为两大类:主件和附件
// 主件的购买没有限制,钱够就可以;附件的购买有限制,该附件所归属的主件先购买,才能购买这个附件
// 例如,若想买打印机或扫描仪这样的附件,必须先购买电脑这个主件
// 以下是一些主件及其附件的展示:
// 电脑:打印机,扫描仪 | 书柜:图书 | 书桌:台灯,文具 | 工作椅:无附件
// 每个主件最多有2个附件,并且附件不会再有附件,主件购买后,怎么去选择归属附件完全随意,钱够就可以
// 所有的物品编号都在1~m之间,每个物品有三个信息:价格v、重要度p、归属q
// 价格就是花费,价格 * 重要度 就是收益,归属就是该商品是依附于哪个编号的主件
// 比如一件商品信息为[300,2,6],花费300,收益600,该商品是6号主件商品的附件
// 再比如一件商品信息[100,4,0],花费100,收益400,该商品自身是主件(q==0)
// 给定m件商品的信息,给定总钱数n,返回在不违反购买规则的情况下最大的收益
// 测试链接 : https://www.luogu.com.cn/problem/P1064
// 测试链接 : https://www.nowcoder.com/practice/f9c6f980eeec43ef85be20755ddbeaf4
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

king数组:表示是否是主商品
fans数组:附件数量
followss数组:附件编号数组

dp[i][j]:0…i范围上,只关心主商品,并且进行展开,花费不超过j的情况下,获得的最大收益
情况1:不要该主商品,dp[p][j],p是上一个主商品的编号
情况2:只要主商品,dp[p][j-cost[i]]+val[i]
有附件的情况下考虑:
情况3:要主商品,要附件1,dp[p][j-cost[i]-cost[fan1]]+val[i],j-cost[i]-cost[fan1]>=0
情况4:要主商品,要附件2,dp[p][j-cost[i]-cost[fan2]]+val[i],j-cost[i]-cost[fan2]>=0
情况5:要主商品,要附件1和2,dp[p][j-cost[i]-cost[fan1]-cost[fan2]]+val[i],j-cost[i]-cost[fan1]-cost[fan2]>=0
所有情况下选最大值。

0行:无商品的时候,无收益,为0
返回:dp[p][i],最后一件主键商品展开后的最大收益。

package class073;

// 有依赖的背包(模版)
// 物品分为两大类:主件和附件
// 主件的购买没有限制,钱够就可以;附件的购买有限制,该附件所归属的主件先购买,才能购买这个附件
// 例如,若想买打印机或扫描仪这样的附件,必须先购买电脑这个主件
// 以下是一些主件及其附件的展示:
// 电脑:打印机,扫描仪 | 书柜:图书 | 书桌:台灯,文具 | 工作椅:无附件
// 每个主件最多有2个附件,并且附件不会再有附件,主件购买后,怎么去选择归属附件完全随意,钱够就可以
// 所有的物品编号都在1~m之间,每个物品有三个信息:价格v、重要度p、归属q
// 价格就是花费,价格 * 重要度 就是收益,归属就是该商品是依附于哪个编号的主件
// 比如一件商品信息为[300,2,6],花费300,收益600,该商品是6号主件商品的附件
// 再比如一件商品信息[100,4,0],花费100,收益400,该商品自身是主件(q==0)
// 给定m件商品的信息,给定总钱数n,返回在不违反购买规则的情况下最大的收益
// 测试链接 : https://www.luogu.com.cn/problem/P1064
// 测试链接 : https://www.nowcoder.com/practice/f9c6f980eeec43ef85be20755ddbeaf4
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;

public class Code05_DependentKnapsack {

	public static int MAXN = 33001;

	public static int MAXM = 61;

	public static int[] cost = new int[MAXM];

	public static int[] val = new int[MAXM];

	public static boolean[] king = new boolean[MAXM];

	public static int[] fans = new int[MAXM];

	public static int[][] follows = new int[MAXM][2];

	public static int[] dp = new int[MAXN];

	public static int n, m;

	public static void clean() {
		for (int i = 1; i <= m; i++) {
			fans[i] = 0;
		}
	}

	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		StreamTokenizer in = new StreamTokenizer(br);
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while (in.nextToken() != StreamTokenizer.TT_EOF) {
			n = (int) in.nval;
			in.nextToken();
			m = (int) in.nval;
			clean();
			for (int i = 1, v, p, q; i <= m; i++) {
				in.nextToken(); v = (int) in.nval;
				in.nextToken(); p = (int) in.nval;
				in.nextToken(); q = (int) in.nval;
				cost[i] = v;
				val[i] = v * p;
				king[i] = q == 0;
				if (q != 0) {
					follows[q][fans[q]++] = i;
				}
			}
			out.println(compute2());
		}
		out.flush();
		out.close();
		br.close();
	}

	// 严格位置依赖的动态规划
	public static int compute1() {
		// dp[0][....] = 0 : 无商品的时候
		int[][] dp = new int[m + 1][n + 1];
		// p : 上次展开的主商品编号
		int p = 0;
		for (int i = 1, fan1, fan2; i <= m; i++) {
			if (king[i]) {
				for (int j = 0; j <= n; j++) {
					// dp[i][j] : 0...i范围上,只关心主商品,并且进行展开
					//            花费不超过j的情况下,获得的最大收益
					// 可能性1 : 不考虑当前主商品
					dp[i][j] = dp[p][j];
					if (j - cost[i] >= 0) {
						// 可能性2 : 考虑当前主商品,只要主
						dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i]] + val[i]);
					}
					// fan1 : 如果有附1商品,编号给fan1,如果没有,fan1 == -1
					// fan2 : 如果有附2商品,编号给fan2,如果没有,fan2 == -1
					fan1 = fans[i] >= 1 ? follows[i][0] : -1;
					fan2 = fans[i] >= 2 ? follows[i][1] : -1;
					if (fan1 != -1 && j - cost[i] - cost[fan1] >= 0) {
						// 可能性3 : 主 + 附1
						dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i] - cost[fan1]] + val[i] + val[fan1]);
					}
					if (fan2 != -1 && j - cost[i] - cost[fan2] >= 0) {
						// 可能性4 : 主 + 附2
						dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i] - cost[fan2]] + val[i] + val[fan2]);
					}
					if (fan1 != -1 && fan2 != -1 && j - cost[i] - cost[fan1] - cost[fan2] >= 0) {
						// 可能性5 : 主 + 附1 + 附2
						dp[i][j] = Math.max(dp[i][j],
								dp[p][j - cost[i] - cost[fan1] - cost[fan2]] + val[i] + val[fan1] + val[fan2]);
					}
				}
				p = i;
			}
		}
		return dp[p][n];
	}

	// 空间压缩
	public static int compute2() {
		Arrays.fill(dp, 0, n + 1, 0);
		for (int i = 1, fan1, fan2; i <= m; i++) {
			if (king[i]) {
				for (int j = n; j >= cost[i]; j--) {
					dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]);
					fan1 = fans[i] >= 1 ? follows[i][0] : -1;
					fan2 = fans[i] >= 2 ? follows[i][1] : -1;
					if (fan1 != -1 && j - cost[i] - cost[fan1] >= 0) {
						dp[j] = Math.max(dp[j], dp[j - cost[i] - cost[fan1]] + val[i] + val[fan1]);
					}
					if (fan2 != -1 && j - cost[i] - cost[fan2] >= 0) {
						dp[j] = Math.max(dp[j], dp[j - cost[i] - cost[fan2]] + val[i] + val[fan2]);
					}
					if (fan1 != -1 && fan2 != -1 && j - cost[i] - cost[fan1] - cost[fan2] >= 0) {
						dp[j] = Math.max(dp[j],
								dp[j - cost[i] - cost[fan1] - cost[fan2]] + val[i] + val[fan1] + val[fan2]);
					}
				}
			}
		}
		return dp[n];
	}

}

code6 非负数组前k个最小的子序列累加和

// 非负数组前k个最小的子序列累加和
// 给定一个数组nums,含有n个数字,都是非负数
// 给定一个正数k,返回所有子序列中累加和最小的前k个累加和
// 子序列是包含空集的
// 1 <= n <= 10^5
// 1 <= nums[i] <= 10^6
// 1 <= k <= 10^5
// 注意这个数据量,用01背包的解法是不行的,时间复杂度太高了
// 对数器验证

01背包:
dp[i][j]:i个数,累加和为j的子序列个数

  1. dp[i-1][j]
  2. dp[i-1][j-nums[i]]
    dp[n][…]:累加和为0…n的子序列计数

堆:容量为k的优先队列
初始数据从小到大排序,放入第一个
弹出小顶堆的顶(集合),sum加入结果数组
①删除集合最后一个数,下一个放入
②再加入下一个,放入

优化:只记录当前最后一个下标

package class073;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;

// 非负数组前k个最小的子序列累加和
// 给定一个数组nums,含有n个数字,都是非负数
// 给定一个正数k,返回所有子序列中累加和最小的前k个累加和
// 子序列是包含空集的
// 1 <= n <= 10^5
// 1 <= nums[i] <= 10^6
// 1 <= k <= 10^5
// 注意这个数据量,用01背包的解法是不行的,时间复杂度太高了
// 对数器验证
public class Code06_TopKMinimumSubsequenceSum {

	// 暴力方法
	// 为了验证
	public static int[] topKSum1(int[] nums, int k) {
		ArrayList<Integer> allSubsequences = new ArrayList<>();
		f1(nums, 0, 0, allSubsequences);
		allSubsequences.sort((a, b) -> a.compareTo(b));
		int[] ans = new int[k];
		for (int i = 0; i < k; i++) {
			ans[i] = allSubsequences.get(i);
		}
		return ans;
	}

	// 暴力方法
	// 得到所有子序列的和
	public static void f1(int[] nums, int index, int sum, ArrayList<Integer> ans) {
		if (index == nums.length) {
			ans.add(sum);
		} else {
			f1(nums, index + 1, sum, ans);
			f1(nums, index + 1, sum + nums[index], ans);
		}
	}

	// 01背包来实现
	// 这种方法此时不是最优解
	// 因为n很大,数值也很大,那么可能的累加和就更大
	// 时间复杂度太差
	public static int[] topKSum2(int[] nums, int k) {
		int sum = 0;
		for (int num : nums) {
			sum += num;
		}
		// dp[i][j]
		// 1) dp[i-1][j]
		// 2) dp[i-1][j-nums[i]
		int[] dp = new int[sum + 1];
		dp[0] = 1;
		for (int num : nums) {
			for (int j = sum; j >= num; j--) {
				dp[j] += dp[j - num];
			}
		}
		int[] ans = new int[k];
		int index = 0;
		for (int j = 0; j <= sum && index < k; j++) {
			for (int i = 0; i < dp[j] && index < k; i++) {
				ans[index++] = j;
			}
		}
		return ans;
	}

	// 正式方法
	// 用堆来做是最优解,时间复杂度O(n * log n) + O(k * log k)
	public static int[] topKSum3(int[] nums, int k) {
		Arrays.sort(nums);
		// (子序列的最右下标,子序列的累加和)
		PriorityQueue<int[]> heap = new PriorityQueue<>((a, b) -> a[1] - b[1]);
		heap.add(new int[] { 0, nums[0] });
		int[] ans = new int[k];
		for (int i = 1; i < k; i++) {
			int[] cur = heap.poll();
			int right = cur[0];
			int sum = cur[1];
			ans[i] = sum;
			if (right + 1 < nums.length) {
				heap.add(new int[] { right + 1, sum - nums[right] + nums[right + 1] });
				heap.add(new int[] { right + 1, sum + nums[right + 1] });
			}
		}
		return ans;
	}

	// 为了测试
	public static int[] randomArray(int len, int value) {
		int[] ans = new int[len];
		for (int i = 0; i < len; i++) {
			ans[i] = (int) (Math.random() * value);
		}
		return ans;
	}

	// 为了测试
	public static boolean equals(int[] ans1, int[] ans2) {
		if (ans1.length != ans2.length) {
			return false;
		}
		for (int i = 0; i < ans1.length; i++) {
			if (ans1[i] != ans2[i]) {
				return false;
			}
		}
		return true;
	}

	// 为了测试
	// 对数器
	public static void main(String[] args) {
		int n = 15;
		int v = 40;
		int testTime = 5000;
		System.out.println("测试开始");
		for (int i = 0; i < testTime; i++) {
			int len = (int) (Math.random() * n) + 1;
			int[] nums = randomArray(len, v);
			int k = (int) (Math.random() * ((1 << len) - 1)) + 1;
			int[] ans1 = topKSum1(nums, k);
			int[] ans2 = topKSum2(nums, k);
			int[] ans3 = topKSum3(nums, k);
			if (!equals(ans1, ans2) || !equals(ans1, ans3)) {
				System.out.println("出错了!");
			}
		}
		System.out.println("测试结束");
	}

}

2023-11-12 23:08:57


标签:背包,cost,target,class073,nums,int,sum,01,dp
From: https://blog.51cto.com/u_15719556/8923417

相关文章

  • class074 背包dp-分组背包、完全背包【算法】
    class074背包dp-分组背包、完全背包【算法】算法讲解074【必备】背包dp-分组背包、完全背包code1P1757通天之分组背包//分组背包(模版)//给定一个正数m表示背包的容量,有n个货物可供挑选//每个货物有自己的体积(容量消耗)、价值(获得收益)、组号(分组)//同一个组的物品只......
  • Landsat7_C2_ST数据集2019年1月-2022年12月
    简介:Landsat7_C2_ST数据集是经大气校正后的地表温度数据,属于Collection2的二级数据产品,以开尔文为单位测量地球表面温度,是全球能量平衡研究和水文模拟中的重要地球物理参数。地表温度数据还有助于监测作物和植被健康状况,以及极端高温事件,如自然灾害(如火山爆发、野火)和城市热岛效......
  • 算法分析-动态规划-求解0-1背包问题
    一.题目需求 使用一个体积大小为13的背包,选择一件或多件商品带走,使得所选商品总价值最大。商品列表如下: 二.算法思想1,这是一个经典的0-1背包问题它要求我们在一组物品中选择一些,每个物品只能选择一次或者不选择,目标是使得所选物品的总价值最大。这个问题在实际生活中有很......
  • VisualStudio2019创建Code Snippet
    CodeSnippet是什么CodeSnippet,与其称其为代码片段(CodeBlock),将它翻译成代码模板(CodeTemplate)可能更合适一些。任何一段代码都可以叫做代码片段,我们这里要讲的不是这种随性的东西,而是一种快速生成代码的快捷方式,通过它可以有效地提高我们的编程效率。举个例子,假如你在C#......
  • U388010 题解
    洛谷U388010题解link:https://www.luogu.com.cn/problem/U388010Sol首先,我们看到这一条件:对于每一个\(1\lei\len\),\(1\lej\len\),\(i\neqj\)满足\(a_i\bmoda_j\neq0,\a_j\bmoda_i\neq0\)。我们知道,质数的因数只有\(1\)和本身,所以当序列里全是质数......
  • [2019 集训队互测 Day 4]绝目编诗
    题意给出一个\(n\)个点\(m\)条边的简单无向图,判断是否存在两个长度相同的简单环。题解发现环的个数超过\(n\)的时候,一定有两个长度相同的简单环。当\(m\ge2n\)的时候,环的个数达到了\(n+1\),一定有两个长度相同的环。所以\(m\)比较大的情况就略去了。在考虑如何......
  • 【洛谷】P1024 [NOIP2001 提高组] 一元三次方程求解 (二分)
    题目描述见此:P1024如何求一个方程的根呢qwq首先,根是什么,函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点。回顾我们高一学过的一个定理:零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)......
  • 李强 分布式计算、云计算与大数据 作者:林伟伟 著出版社:机械工业出版社出版时间:20
    前言背景分布式计算从20世纪六七十年代发展到现在,一直是计算机科学技术的理论与应用的热点问题,特别是*近几年,随着互联网、移动互联网、社交网络应用的发展,急需分布式计算的新技术——云计算、大数据,以满足和实现新时代计算机的应用需求。云计算、大数据等新技术本质上是分布式计......
  • 【洛谷】P1873 [COCI 2011/2012 #5] EKO / 砍树 (二分)
    题目描述见:P1873思路比较明确qwq因为答案显然满足单调性:当x超过某个数一定是错的(收集的木材大于m),而小于x一定是对的,并且x是从0一直递增。故我们只需二分法找到x。直接看代码吧qwq精髓是check函数直接模拟题目要求ww#include<iostream>usingnamespacestd;#defineMAXN100......
  • python网站创建012:DOM、BOM、jQuery的使用
    DOM:标签操作模块。这个模块里面的方法专门用来操作HTML的标签的。比如说获取HTML标签的文本、或者给HTML标签加上样式<body><!--1、比如这里定义了一个div,然后你想获取div里面文本,该如何操作--><divid="txt">你好</div><script>//定义一个自执行函......