首页 > 编程语言 >10行Python代码能做出哪些酷炫的事情?

10行Python代码能做出哪些酷炫的事情?

时间:2023-12-11 11:03:32浏览次数:36  
标签:10 sentiment Python text 代码 酷炫 import mouse probs

Python凭借其简洁的代码,赢得了许多开发者的喜爱。因此也就促使了更多开发者用Python开发新的模块,从而形成良性循环,Python可以凭借更加简短的代码实现许多有趣的操作。下面我们来看看,我们用不超过10行代码能实现些什么有趣的功能。

一、生成二维码

二维码又称二维条码,常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,而生成一个二维码也非常简单,在Python中我们可以通过MyQR模块了生成二维码,而生成一个二维码我们只需要2行代码,我们先安装MyQR模块,这里选用国内的源下载:

pip install qrcode

安装完成后我们就可以开始写代码了:

import qrcode

text = input(输入文字或URL:)  
# 设置URL必须添加http://
img =qrcode.make(text)
img.save()                            
#保存图片至本地目录,可以设定路径
img.show()

我们执行代码后会在项目下生成一张二维码。当然我们还可以丰富二维码:

我们先安装MyQR模块

pip install  myqr
def gakki_code():
    version, level, qr_name = myqr.run(
        words=https://520mg.com/it/#/main/2,  
        # 可以是字符串,也可以是网址(前面要加http(s)://)
        version=1,  # 设置容错率为最高
        level='H',  
        # 控制纠错水平,范围是L、M、Q、H,从左到右依次升高
        picture=gakki.gif,  
        # 将二维码和图片合成
        colorized=True,  # 彩色二维码
        contrast=1.0, 
         # 用以调节图片的对比度,1.0 表示原始图片,更小的值表示更低对比度,更大反之。默认为1.0
        brightness=1.0,  
        # 用来调节图片的亮度,其余用法和取值同上
        save_name=gakki_code.gif,  
        # 保存文件的名字,格式可以是jpg,png,bmp,gif
        save_dir=os.getcwd()  # 控制位置

    )
 gakki_code()

另外MyQR还支持动态图片。

二、生成词云

词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。

但是作为一个老码农,还是喜欢自己用代码生成自己的词云,复杂么?需要很长时间么?很多文字都介绍过各种的方法,但实际上只需要10行python代码即可。

先安装必要库

pip install wordcloud
pip install jieba
pip install matplotlib
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba

text_from_file_with_apath = open('/Users/hecom/23tips.txt').read()

wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True)
wl_space_split =  .join(wordlist_after_jieba)

my_wordcloud = WordCloud().generate(wl_space_split)

plt.imshow(my_wordcloud)
plt.axis(off)
plt.show()

如此而已,生成的一个词云是这样的:

读一下这10行代码:

  • 1~3 行,分别导入了画图的库matplotlib,词云生成库wordcloud 和 jieba的分词库;
  • 4 行,是读取本地的文件,代码中使用的文本是本公众号中的《老曹眼中研发管理二三事》。
  • 5~6 行,使用jieba进行分词,并对分词的结果以空格隔开;
  • 7行,对分词后的文本生成词云;
  • 8~10行,用pyplot展示词云图。

这是我喜欢python的一个原因吧,简洁明快。

三、批量抠图

抠图的实现需要借助百度飞桨的深度学习工具paddlepaddle,我们需要安装两个模块就可以很快的实现批量抠图了,第一个是PaddlePaddle:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

还有一个是paddlehub模型库:

pip install -i https://mirror.baidu.com/pypi/simple paddlehub

接下来我们只需要5行代码就能实现批量抠图:

import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')        # 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'    # 文件目录
files = [path + i for i in os.listdir(path)]    # 获取文件列表
results = humanseg.segmentation(data={'image':files})    # 抠图

四、文字情绪识别

在paddlepaddle面前,自然语言处理也变得非常简单。实现文字情绪识别我们同样需要安装PaddlePaddle和Paddlehub,具体安装参见三中内容。然后就是我们的代码部分了:

import paddlehub as hub    
senta = hub.Module(name='senta_lstm')        # 加载模型
sentence = [    # 准备要识别的语句
    '你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏',
]
results = senta.sentiment_classify(data={text:sentence})    # 情绪识别
# 输出识别结果
for result in results:
    print(result)

识别的结果是一个字典列表:

{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398}
{'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967}
{'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676}
{'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064}
{'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067}
{'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}

其中sentiment_key字段包含了情绪信息,详细分析可以参见Python自然语言处理只需要5行代码。

五、识别是否带了口罩

这里同样是使用PaddlePaddle的产品,我们按照上面步骤安装好PaddlePaddle和Paddlehub,然后就开始写代码:

import paddlehub as hub
# 加载模型
module = hub.Module(name='pyramidbox_lite_mobile_mask')
# 图片列表
image_list = ['face.jpg']
# 获取图片字典
input_dict = {'image':image_list}
# 检测是否带了口罩
module.face_detection(data=input_dict)

执行上述程序后,项目下会生成detection_result文件夹,识别结果都会在里面。

六、简易信息轰炸

Python控制输入设备的方式有很多种,我们可以通过win32或者pynput模块。我们可以通过简单的循环操作来达到信息轰炸的效果,这里以pynput为例,我们需要先安装模块:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput

在写代码之前我们需要手动获取输入框的坐标:

from pynput import mouse
# 创建一个鼠标
m_mouse = mouse.Controller()
# 输出鼠标位置
print(m_mouse.position)

可能有更高效的方法,但是我不会。

获取后我们就可以记录这个坐标,消息窗口不要移动。然后我们执行下列代码并将窗口切换至消息页面:

import time
from pynput import mouse, keyboard
time.sleep(5)
m_mouse = mouse.Controller()    # 创建一个鼠标
m_keyboard = keyboard.Controller()  # 创建一个键盘
m_mouse.position = (850, 670)       # 将鼠标移动到指定位置
m_mouse.click(mouse.Button.left) # 点击鼠标左键
while(True):
    m_keyboard.type('你好')        # 打字
    m_keyboard.press(keyboard.Key.enter)    # 按下enter
    m_keyboard.release(keyboard.Key.enter)    # 松开enter
    time.sleep(0.5)    # 等待 0.5秒

我承认,这个超过了10行代码,而且也不高端。

七、识别图片中的文字

我们可以通过Tesseract来识别图片中的文字,在Python中实现起来非常简单,但是前期下载文件、配置环境变量等稍微有些繁琐,所以本文只展示代码:

import pytesseract
from PIL import Image
img = Image.open('text.jpg')
text = pytesseract.image_to_string(img)
print(text)

其中text就是识别出来的文本。如果对准确率不满意的话,还可以使用百度的通用文字接口。

八、简单的小游戏

从一些小例子入门感觉效率很高。

import random
print(1-100数字猜谜游戏!)
num = random.randint(1,100)
guess =guess

i = 0
while guess != num:
    i += 1
    guess = int(input(请输入你猜的数字:))

    if guess == num:
        print(恭喜,你猜对了!)
    elif guess < num:
        print(你猜的数小了...)
    else:
        print(你猜的数大了...)

print(你总共猜了%d %i + 次)

猜数小案例当着练练手

标签:10,sentiment,Python,text,代码,酷炫,import,mouse,probs
From: https://blog.51cto.com/u_15739596/8768635

相关文章

  • 上周热点回顾(12.4-12.10)
    热点随笔:· 【故障公告】数据库服务器今年第七次CPU100%故障(12月8日又出现) (博客园团队)· C#/.NET/.NETCore优秀项目和框架2023年11月简报 (追逐时光者)· 带团队后的日常思考(十三) (咖啡机(K.F.J))· 公司敏感数据被上传Github,吓得我赶紧改提交记录 (程序员小富)· ......
  • spring boot 项目实现调用python工程的方法
    在SpringBoot中调用Python脚本或工程,主要有以下几种方式:1.使用ProcessBuilder或Runtime执行Python脚本这是最直接的方法,使用Java的ProcessBuilder或Runtime.getRuntime().exec()来执行Python脚本。优点:实现简单,无需额外依赖。缺点:处理输出和错误流可能较为繁琐......
  • 【2023-12-10】连岳摘抄
    23:59水深的河不会因为投入一块石头便波涛汹涌,人也是如此。如果一个人受到欺侮便勃然大怒,那么他就不是大河,而是小水洼。                                                ......
  • 我用 AI 写的《JavaScript 工程师的 Python 指南》电子书发布啦!
    关于本书你好,我是luckrnx09,一名靠React恰饭的前端工程师,很高兴向你介绍我的第一本开源电子书《JavaScript工程师的Python指南》。本书的内容完全免费,开源地址:https://github.com/luckrnx09/python-guide-for-javascript-engineers为什么会有这本书2022年,ChatGPT引起了......
  • 赛博灯泡:Win10/11 设置屏幕缩放 500% 的还原方法(全称键盘,不用鼠标)
    近期注意到因误操作将屏幕缩放设置为500%后无法还原的情况,因为网上有人提出此问题,而其他人尝试复现时也无法解决了,这里给出一种可能的解决办法。因为不同人的分辨率是不一样的,有些电脑分辨率设置的不高,如果低于900P的话有可能界面是显示不完整的,此时无法使用鼠标操作,所以还是......
  • Kylin Linux Advanced Server V10 上安装 Nacos详细步骤
    要在KylinLinuxAdvancedServerV10上安装Nacos,可以按照以下进行操作:1.安装JavaJDK:首先确保已在KylinLinuxAdvancedServerV10上安装了JavaJDK。你可以按照前面提到的步骤进行JDK的安装和配置。2.下载Nacos:前往Nacos的官方GitHub仓库(https://github.com/ali......
  • linux 开机自动启动python程序
    可以使用systemd服务来开机自动启用程序。假设要开机自动启动的python程序是:/opt/app.py可以创建一个systemd服务cd/etc/systemd/systemvimstart-python.service内容如下:[Unit]Description=PythonStartupServiceAfter=network.target[Service]ExecStart=/usr/b......
  • uva10391 复合词 Compound Words
    原题链接 复合词CompoundWords-洛谷|计算机科学教育新生态(luogu.com.cn)这道题我的第一想法是二重循环遍历所有组合,但结合120000的数据量知晓此方法肯定超时。那么解法二:先用map存储所有的单词,再遍历所有的单词(假如为S),对S进行分解得到Sa和Sb,然后判断Sa和Sb在不在map中(......
  • Python Numpy 数据分析常用数学运算
    Python的NumPy库是数据分析和科学计算的核心库之一,提供了广泛的数学运算功能,使得处理大型多维数组和矩阵运算变得简单高效。NumPy是进行数据分析和科学计算的基石,掌握其数学运算功能对于进行有效的数据处理和分析至关重要。本文主要介绍PythonNumpy中数据分析常用数学运算......
  • Python 通过 akshare 轻松绘制股票中国平安K线图
    想通过Python和akshare绘制K线图,网上找了很多代码,放在Pycharm中都是无法正常运行绘制的,于是自己整理了下并调试成功。环境:python3.9(miniconda3)、Pycharm、Win10需要用的模块或者工具库:akshare(1.11.91)、pandas(2.1.1)、numpy(1.26.2)、matplotlib(3.8.2)、mplfinanc......