首页 > 编程语言 >车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

时间:2023-10-15 19:36:28浏览次数:65  
标签:layers python 模型 Django images test TensorFlow model

一、介绍

车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上传一张车辆车型图片识别其名称。

二、系统效果图片

img_10_15_17_10_12.jpg
img_10_15_17_10_26.jpg
img_10_15_17_10_33.jpg

三、演示视频 and 代码 and 介绍

视频+代码+介绍:https://www.yuque.com/ziwu/yygu3z/sem38n5ssorbg8g7

四、TensorFlow进行图像识别分类介绍

随着深度学习的快速发展,图像分类识别已成为AI领域的核心技术之一。TensorFlow,由Google Brain团队开发的开源机器学习框架,为开发者提供了一个方便、高效的工具来构建和部署图像分类模型。
图像分类的目标是给定一个图像,将其分配到预定义的类别之一。例如,给定一个狗的图像,模型应该能够识别出它是狗,而不是猫或其他动物。
使用TensorFlow进行图像分类
以下是使用TensorFlow进行图像分类的基本步骤:

  • 数据准备:首先,你需要一个图像数据集,例如CIFAR-10或ImageNet。使用tf.data API可以帮助您高效地加载和预处理数据。
  • 模型构建:TensorFlow提供了Keras API,允许开发者以简洁的方式定义模型。对于图像分类,经常使用的模型有Convolutional Neural Networks (CNN)。
  • 模型训练:一旦模型被定义,你可以使用model.fit()方法来训练模型。TensorFlow还提供了许多优化器和损失函数,使得模型训练变得容易。
  • 评估和预测:使用model.evaluate()和model.predict()方法,可以评估模型在测试数据上的性能,并为新图像提供预测。

以下是一个使用TensorFlow进行图像分类的简单示例,基于CIFAR-10数据集:

import tensorflow as tf
from tensorflow.keras import layers, models, datasets

# 1. 数据加载和预处理
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# 归一化图像数据到0-1之间
train_images, test_images = train_images / 255.0, test_images / 255.0

# 2. 创建模型
model = models.Sequential([
    layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10)
])

# 3. 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 4. 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

# 5. 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(f"\nTest accuracy: {test_acc}")

# 6. 进行预测
probability_model = tf.keras.Sequential([model, layers.Softmax()])
predictions = probability_model.predict(test_images)
predicted_label = tf.argmax(predictions, axis=1)
print(predicted_label[:5])  # 打印前5个预测的标签

此示例首先加载了CIFAR-10数据集,然后定义、编译、训练和评估了一个简单的CNN模型。最后,我们为测试数据集上的图像提供预测。

标签:layers,python,模型,Django,images,test,TensorFlow,model
From: https://www.cnblogs.com/shiqianlong/p/17766002.html

相关文章

  • 同花顺期货通使用python写指标demo1
    期货通支持python本来是个好事情。奈何同花顺公司做产品不讲究,未经测试就发布了,全是bug。API接口也不完善,取数据的接口不支持取【持仓量】!玩期货不提供持仓量接口,那就只能是个玩具,不具有实用价值。怎么说呢?还是希望同花顺期货通能把python功能搞完善。 ......
  • python2
    二进制0b 0B八进制0o 0O十六进制0x OX 数值类型不可变数据类型整数类型 int浮点类型  float复数  .real  .imag字符串类型 type()用于查看数据类型round(x,3)......
  • 《Python计算机视觉编程》高清高质量电子书PDF
    下载:https://pan.quark.cn/s/3c386f89afec......
  • python学习——回归模型
    从本篇开始记录一下我在研究生阶段的学习作业之成人死亡率预测(回归模型)1实验介绍1.1实验背景成年人死亡率指的是每一千人中15岁至60岁死亡的概率(数学期望)。这里我们给出了世界卫生组织(WHO)下属的全球卫生观察站(GHO)数据存储库跟踪的所有国家健康状况以及许多其他相关因素。要......
  • Python滑动窗口算法:滑动窗口算法(4 by 4 sliding window price)
    我知道滑动窗口算法的时间复杂度是o(N),但是可变大小的滑动窗口算法的时间复杂度是多少。对于e-数组=[1,2,3,4,5,6]当滑动窗口的大小为=1时窗口-[1],[2],[3],[4],[5],[6]当滑动窗口的大小为=2时窗口-[1,2],[2,3],[3,4],[4,5],[5,6]当滑动窗口的大小为=3时窗口-[1,2,3],[2......
  • Django开发要点
    一、内置标签及自定义标签描述"{%for%}"遍历输出上下文的内容"{%if%}"对上下文进行条件判断"{%csrf_token%}"生成csrf_token的标签,用于防护跨站请求伪造攻击"{%url%}"引用路由配置的地址,生成相应的路由地址"{%with%}"将上下文重新命名"{%......
  • Python - 字典2
    Python-访问字典项您可以通过在方括号内引用其键名来访问字典的项:示例,获取"model"键的值:thisdict={"brand":"Ford","model":"Mustang","year":1964}x=thisdict["model"]还有一种叫做get()的方法,它将给您相同的结果:示例,获取......
  • python开发
          ......
  • 自动批量将阿里云盘资源发布成WordPress文章带截图Python脚本(含正文 付费信息 下载地
    自动批量将阿里云盘资源发布成WordPress文章带截图Python脚本(含正文付费信息下载地址SEO等自动设置)自动批量将阿里云盘资源发布成WordPress文章带截图Python脚本(含正文付费信息下载地址SEO等自动设置)源码下载自动上传图片至WordPress站点,使用RestFulAPI批量发布文章,文章含......
  • python的一些模块
    1.sys模块sys是python自带模块.sys模块常见函数1$python2Python2.7.6(default,Oct262016,20:30:19)3[GCC4.8.4]onlinux24Type"help","copyright","credits"or"license"formoreinformation.5>>>import......