一、lambda 语法
lambda 函数的语法只包含一个语句,表现形式如下:
lambda [arg1 [,arg2,.....argn]]:expression
二、lambda 特性
lambda 函数是匿名的;lambda 函数有输入和输出;lambda 函数拥有自己的命名空间。
常见的lambda函数示例:
lambda x, y: x*y # 函数输入是x和y,输出是它们的积x*y
lambda:None # 函数没有输入参数,输出是None
lambda *args: sum(args) # 输入是任意个数参数,输出是它们的和(隐性要求输入参数必须能进行算术运算)
lambda **kwargs: 1 # 输入是任意键值对参数,输出是1
三、lambda 常见用法
1、将lambda函数赋值给一个变量,通过这个变量间接调用该lambda函数。
add = lambda x, y: x+y
相当于定义了加法函数lambda x, y: x+y,并将其赋值给变量add,这样变量add就指向了具有加法功能的函数。
这时我们如果执行add(1, 2),其输出结果就为 3。
2、将lambda函数赋值给其他函数,从而将其他函数用该lambda函数替换。
# 为了把标准库time中的函数sleep的功能屏蔽(Mock),我们可以在程序初始化时调用:
time.sleep=lambda x: None
# 这样,在后续代码中调用time库的sleep函数将不会执行原有的功能。
# 例如:
time.sleep(3) # 程序不会休眠 3 秒钟,而是因为lambda输出为None,所以这里结果是什么都不做
3、将lambda函数作为参数传递给其他函数。
四、lambda 用法之高阶函数
map() 函数:
map() 会根据提供的函数对指定序列做映射。
第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。
语法:
map(function, iterable, ...)
# 1、计算平方数
def square(x):
return x ** 2
map(square, [1,2,3,4,5]) # 计算列表各个元素的平方
# 结果:
[1, 4, 9, 16, 25]
# 2、计算平方数,lambda 写法
map(lambda x: x ** 2, [1, 2, 3, 4, 5])
# 结果:
[1, 4, 9, 16, 25]
# 3、提供两个列表,将其相同索引位置的列表元素进行相加
map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
# 结果:
[3, 7, 11, 15, 19]
reduce() 函数:
reduce() 函数会对参数序列中元素进行累积。
函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。语法:
reduce(function, iterable[, initializer])
# 1、两数相加
def add(x, y):
return x + y
reduce(add, [1, 3, 5, 7, 9]) # 计算列表元素和:1+3+5+7+9
# 结果:
25
# ===========匿名函数写法:===========
# 2、两数相加,lambda 写法
reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
# 结果:
15
# 3、把序列 [1, 3, 5, 7, 9] 变换成整数 13579:
from functools import reduce
def fn(x, y):
return x * 10 + y
reduce(fn, [1, 3, 5, 7, 9])
# 结果:
13579
sorted() 函数:
sorted() 函数对所有可迭代的对象进行排序操作。
sort 与 sorted 区别:
sort 是 list 的一个方法,而 sorted 可以对所有可迭代的对象进行排序操作。
list 的 sort 方法返回的是对已经存在的列表进行操作,无返回值,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
语法:
sorted(iterable[, cmp[, key[, reverse]]])
# 1、简单排序
a = [5,7,6,3,4,1,2]
b = sorted(a) # 使用sorted,保留原列表,不改变列表a的值
print(a)
[5, 7, 6, 3, 4, 1, 2]
print(b)
[1, 2, 3, 4, 5, 6, 7]
# ===========匿名函数用法:===========
L=[('b',2),('a',1),('c',3),('d',4)]
# 2、利用参数 cmp 排序
sorted(L, cmp=lambda x,y:cmp(x[1],y[1]))
# 结果:
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
# 3、利用参数 key 排序
sorted(L, key=lambda x:x[1])
# 结果:
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
# 4、按年龄升序
students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
sorted(students, key=lambda s: s[2])
# 结果:
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
# 5、按年龄降序
sorted(students, key=lambda s: s[2], reverse=True)
# 结果:
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
filter() 函数:
描述:
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。
该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
语法:
filter(function, iterable)
# 1、过滤出列表中的所有奇数
def is_odd(n):
return n % 2 == 1
newlist = filter(is_odd, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(list(newlist))
# 结果: [1, 3, 5, 7, 9]
# ===========匿名函数用法:===========
# 2、将列表[1, 2, 3]中能够被3整除的元素过滤出来
newlist = filter(lambda x: x % 3 == 0, [1, 2, 3])
print(list(newlist))
# 结果: [3]
标签:function,函数,Python,reduce,列表,sorted,lambda
From: https://www.cnblogs.com/conpi/p/17164776.html