首页 > 编程语言 >UI自动化测试之openCV(均值哈希算法、差值哈希算法、感知哈希算法、三直方图算法相似度、单通道的直方图算法)图片相似度比较

UI自动化测试之openCV(均值哈希算法、差值哈希算法、感知哈希算法、三直方图算法相似度、单通道的直方图算法)图片相似度比较

时间:2022-12-15 20:22:50浏览次数:71  
标签:hash img cv2 直方图 算法 hash1 哈希

  

上图为图片相似度对比素材。

均值哈希算法

代码如下:

# -*- coding: utf-8 -*-
import cv2


# Hash值对比
def cmpHash(hash1, hash2, shape=(10, 10)):
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 相等则n计数+1,n最终为相似度
        if hash1[i] == hash2[i]:
            n = n + 1
    return n / (shape[0] * shape[1])


# 均值哈希算法
def aHash(img, shape=(10, 10)):
    # 缩放为10*10
    img = cv2.resize(img, shape)
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(shape[0]):
        for j in range(shape[1]):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 100
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(shape[0]):
        for j in range(shape[1]):
            if gray[i, j] > avg:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str


def main():
    img1 = cv2.imread('image1.png')
    img2 = cv2.imread('image2.png')

    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n = cmpHash(hash1, hash2)
    print('均值哈希算法相似度:', n)


if __name__ == "__main__":
    main()

运行结果:

说明:

首先,将一张图片大小调整为10x10,然后转化为灰度图。
接着,求出平均灰度,大于平均灰度值更改为1,反之为0,生成哈希值。
随后,对比两张图片矩阵的相似度,最后返回两张图片的相似百分比。

差值哈希算法

代码如下:

# -*- coding: utf-8 -*-
import cv2


# Hash值对比
def cmpHash(hash1, hash2, shape=(10, 10)):
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 相等则n计数+1,n最终为相似度
        if hash1[i] == hash2[i]:
            n = n + 1
    return n / (shape[0] * shape[1])


# 差值感知算法
def dHash(img, shape=(10, 10)):
    # 缩放10*11
    img = cv2.resize(img, (shape[0] + 1, shape[1]))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ''
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(shape[0]):
        for j in range(shape[1]):
            if gray[i, j] > gray[i, j + 1]:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str


def main():
    img1 = cv2.imread('image1.png')
    img2 = cv2.imread('image2.png')

    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n = cmpHash(hash1, hash2)
    print('差值哈希算法相似度:', n)


if __name__ == "__main__":
    main()

运行结果:

说明:

首先,将一张图片大小调整为10x11,然后转化为灰度图。
接着,比较每行当前值与相邻的下一个值的大小。如果当前值比较大,灰度值更改为1,反之为0,生成哈希值。
随后,对比两张图片矩阵的相似度,最后返回两张图片的相似百分比。

感知哈希算法

代码如下:

# -*- coding: utf-8 -*-
import cv2
import numpy as np


# Hash值对比
def cmpHash(hash1, hash2, shape=(10, 10)):
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 相等则n计数+1,n最终为相似度
        if hash1[i] == hash2[i]:
            n = n + 1
    return n / (shape[0] * shape[1])


# 感知哈希算法(pHash)
def pHash(img, shape=(10, 10)):
    # 缩放32*32
    img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC

    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:10, 0:10]

    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash


def main():
    img1 = cv2.imread('image1.png')
    img2 = cv2.imread('image2.png')

    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n = cmpHash(hash1, hash2)
    print('感知哈希算法相似度:', n)


if __name__ == "__main__":
    main()

运行结果:

说明:

首先,将一张图片大小调整为32x32,然后转化为灰度图,进行离散余弦变换(dct)变换。
接着,opencv实现10x10掩码操作,并求出掩码区域均值,掩码区域像素值大于平均值掩码区域矩阵值设为1,反之为0。
随后,对比两张图片矩阵的相似度,最后返回两张图片的相似百分比。

三直方图算法相似度

代码如下:

# -*- coding: utf-8 -*-
import cv2


# 通过得到RGB每个通道的直方图来计算相似度
def classify_hist_with_split(image1, image2, size=(256, 256)):
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data


# 计算单通道的直方图的相似值
def calculate(image1, image2):
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree


def main():
    img1 = cv2.imread('image1.png')
    img2 = cv2.imread('image2.png')
    n = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n[0])


if __name__ == "__main__":
    main()

运行结果:

说明:

首先,将一张图片大小调整为256x256,并分离出rgb三个通道数组。
接着,使用图像直方图的函数,直方图均衡化,计算出0-255的数值。
随后,对比两张图片直方图的重合度,最后返回两张图片的相似百分比。

单通道的直方图算法

代码如下:

# -*- coding: utf-8 -*-
import cv2


# 计算单通道的直方图的相似值
def calculate(image1, image2):
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree


def main():
    img1 = cv2.imread('image1.png')
    img2 = cv2.imread('image2.png')
    n = calculate(img1, img2)
    print('单通道的直方图算法相似度:', n[0])


if __name__ == "__main__":
    main()

运行结果:

说明:

首先,输入一张图片,使用rgb三个通道的某一个通道。
接着,使用图像直方图的函数,直方图均衡化,计算出0-255的数值。
随后,对比两张图片直方图的重合度,最后返回两张图片的相似百分比。

总结 

import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib

matplotlib.use('TkAgg')
import matplotlib.pyplot as plt


def aHash(img):
    # 均值哈希算法
    # 缩放为8*8
    img = cv2.resize(img, (8, 8))
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 64
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if gray[i, j] > avg:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str


def dHash(img):
    # 差值哈希算法
    # 缩放8*8
    img = cv2.resize(img, (9, 8))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ''
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if gray[i, j] > gray[i, j + 1]:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str


def pHash(img):
    # 感知哈希算法
    # 缩放32*32
    img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC

    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:8, 0:8]

    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash


def calculate(image1, image2):
    # 灰度直方图算法
    # 计算单通道的直方图的相似值
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + \
                     (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree


def classify_hist_with_split(image1, image2, size=(256, 256)):
    # RGB每个通道的直方图相似度
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data


def cmpHash(hash1, hash2):
    # Hash值对比
    # 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。
    # 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似
    # 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 不相等则n计数+1,n最终为相似度
        if hash1[i] != hash2[i]:
            n = n + 1
    return n


def getImageByUrl(url):
    # 根据图片url 获取图片对象
    html = requests.get(url, verify=False)
    image = Image.open(BytesIO(html.content))
    return image


def PILImageToCV():
    # PIL Image转换成OpenCV格式
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = Image.open(path)
    plt.subplot(121)
    plt.imshow(img)
    print(isinstance(img, np.ndarray))
    img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    print(isinstance(img, np.ndarray))
    plt.subplot(122)
    plt.imshow(img)
    plt.show()


def CVImageToPIL():
    # OpenCV图片转换为PIL image
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = cv2.imread(path)
    # cv2.imshow("OpenCV",img)
    plt.subplot(121)
    plt.imshow(img)

    img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    plt.subplot(122)
    plt.imshow(img2)
    plt.show()


def bytes_to_cvimage(filebytes):
    # 图片字节流转换为cv image
    image = Image.open(filebytes)
    img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
    return img


def runAllImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1

    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31

    if para1.startswith("http"):
        # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)

        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)

    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n1 = cmpHash(hash1, hash2)
    print('均值哈希算法相似度aHash:', n1)

    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n2 = cmpHash(hash1, hash2)
    print('差值哈希算法相似度dHash:', n2)

    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)
    print('感知哈希算法相似度pHash:', n3)

    n4 = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n4)

    n5 = calculate(img1, img2)
    print("单通道的直方图", n5)
    print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))
    print("%.2f %.2f %.2f %.2f %.2f " % (1 - float(n1 / 64), 1 -
                                         float(n2 / 64), 1 - float(n3 / 64), round(n4[0], 2), n5[0]))

    plt.subplot(121)
    plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))
    plt.subplot(122)
    plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))
    plt.show()


if __name__ == "__main__":
    p1 = "https://ww3.sinaimg.cn/bmiddle/007INInDly1g336j2zziwj30su0g848w.jpg"
    p2 = "https://ww2.sinaimg.cn/bmiddle/007INInDly1g336j10d32j30vd0hnam6.jpg"
    runAllImageSimilaryFun(p1, p2)

值哈希算法、差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同。

三直方图和单通道直方图的值为0-1,值越大,相似度越高。

 

 

标签:hash,img,cv2,直方图,算法,hash1,哈希
From: https://www.cnblogs.com/hls-code/p/16985953.html

相关文章