• 2024-11-02tarjan算法
    强连通分量细节对于多点跑tarjan来说,可能会有先访问\(u\tov\)中的\(v\),这导致\(dfn[v]<dfn[x]\),后面\(x\)跑tarjan时会误把\(v\)当成祖先,要加判断割点&割边删去后使图不连通的点/边找割边和强连通分量求法大差不差,这里不再赘述找割点不同于前两者,首先割点不是low[x]==dfn
  • 2024-10-30duel 到的题目
    难度会/总\(\ast1900\)\(2/4\)\(\ast2000\)\(2/3\)\(\ast2100\)\(0/1\)\(\ast2200\)\(0/0\)\(\ast2300\)\(2/2\)\(\ast2400\)\(2/2\)总\(8/12\)duellink题目难度标签做法是否想出6522CF1168B\(\as
  • 2024-10-25Tarjan连通性算法模板大整合
    更新日志前言由于Tarjan算法页面过多,这里统一做一个整合,后期可能还会加入或者更改这里的模板。另外的,这个页面只提供模板——以及链接,详细讲解点链接即可。强连通(有向图,储存每个节点属于的分量编号)intscnt;intscc[N],siz[N];intdcnt;intdfn[N],low[N];boolins[N
  • 2024-10-25Tarjan求点双连通分量
    更新日志思路首先,点双连通分量就是删去任意一点后仍连通的分量。如何求呢?看着定义,答案就已经在里面了——求出割点即可。与边双不同的是,点双中是包括割点的。究其原因,删去割点之后,原图会被分成多个连通块,但事实上,割点加入其中任意一个,仍然是双连通的。证明如下:若连通块
  • 2024-10-25Tarjan求边双联通分量
    更新日志思路首先,我们求出原图中所有的桥,然后跑DFS给原图分区。求桥具体过程:Tarjan求桥更具体的,我们遍历每一个点,假如这个点没有被分区,那么就从这个点开始深搜。每一次深搜,都走不是桥的边,那么走到的就都属于一个边双。(很容易证明)这样,我们把每一次深搜走到的所有点分成一
  • 2024-10-25Tarjan求割边(桥)
    更新日志思路割边定义与割点相似,不过是把点换成了边,所以思想和割点差不多。Tarjan割点我们只需要在Tarjan过程中判断某一颗子树的low是否严格大于当前节点的dfn。值得注意,这里子树的low不应该由到它的原边回溯到它的父节点得到!究其原因,其实就是如果子树是一个强连通分量,那
  • 2024-10-18浅谈 tarjan
    就是记录两个数组:dfn[]和low[]其中dfn[]表示访问的顺序,low[u]用来存储\(u\)不经过其父亲能到达的最小时间戳。。。搬一下wiki的图。。。我们发现\(low[v]\gedfn[u]\)可以表示不能回到祖先,则\(u\)点位割点。。。直接上代码P3388------>#include<bits/stdc++.h>usi
  • 2024-10-15Tarjan求强连通分量
    思路首先建成DFS树,对于每个节点,储存两个信息:dfn与low。每当遍历到一个节点,就将其压入栈中,作用后面会说。dfn储存一个节点的dfs序,low储存一个节点的子树能够到达的在栈中的最小dfs序。首先有一个性质,每个节点子树中所有节点的dfn必然大于当前节点的。那么,假如一个节点的low小
  • 2024-10-13Tarjan缩点题单 刷题题解
    Tarjan缩点可以将一个图的每个强连通分量缩成一个点,然后构建新图,该图就会变成一个有向无环图。变成有向无环图之后就能结合最短路,拓扑......解决相应题目洛谷题单分享:https://www.luogu.com.cn/training/526565前几道是绿题,没什么好写的,大致过一下1.强连通分量题目链接:https:
  • 2024-10-11$Tarjan$强连通分量
    有向图缩点非常板,先缩点再拓扑。其实\(Tarjan\)强连通分量缩点往往与拓扑排序求最长路(或其他)密切相关。有向图缩点问有向图上哪个点,其它点都能走到它题面,先缩点,看缩完后有哪些点出度为\(0\),若有多个,则无解,否则即为那一个。最大半联通子图题面先缩点,可以发现缩点后最大半联通
  • 2024-10-10Tarjan
    强连通分量前置知识强连通:一张有向图的节点两两互相可达。连通分量:若\(H\)是\(G\)的一个连通子图,且不存在\(F\)使得\(H\subsetneqF\subseteqG\),则\(H\)为\(G\)的一个连通分量(也叫连通块)Tarjan求强连通分量DFS生成树(用的OI-wiki的图)树边:图中的黑边,每次搜索找到一
  • 2024-09-30tarjan
    强连通分量SSC(缩点)有向图缩点(把一个强连通分量看成一个点),用于优化。树枝边:DFS时经过的边,即DFS搜索树上的边反祖边:也叫回边或后向边,与DFS方向相反,从某个结点指向其某个祖先的边横叉边:从某个结点指向搜索树中另一子树中的某结点的边,它主要是在搜索的时候遇到了
  • 2024-09-26强联通分量——Tarjan算法
    Tarjan算法详解参考文章:强连通分量Tarjan算法是一种用于寻找有向图中强联通分量(StronglyConnectedComponents,SCCs)的算法。它是由RobertTarjan在1972年提出的,基于深度优先搜索(DFS)和栈的数据结构。基本概念强联通分量:在一个有向图中,如果一组节点中任意两个节点都可以互相
  • 2024-09-26Tarjan算法缩点
    Tarjan算法缩点一.Tarjan算法缩点详解在图论中,缩点是指将有向图中的强联通分量(SCCs)缩成单个节点,从而得到一个更简单的图结构,称为缩点图或SCC图。Tarjan算法不仅可以用来寻找强联通分量,还可以用来进行缩点操作。基本概念强联通分量:在一个有向图中,如果一组节点中任意两个节点都
  • 2024-09-23Tarjan再学习
    蓝书的那一套理论比较生硬,且不是很深刻,故重学Tarjan。AlexWei《图论Ⅰ》相关定义割点:在无向图中,删去使得连通分量数增加的点被称为割点。割边:在无向图中,删去使得连通分量数增加的边被称为割边。点双连通图:不存在割点的无向图。边双连通图:不存在割边的无向图。点双连通分量:一
  • 2024-09-22Tarjan算法及其应用 总结+详细讲解+详细代码注释
    \(\text{Tarjan}\)1.引入概念1.强连通分量1.定义在有向图\(G\)中,强连通分量就是满足以下条件的\(G\)的子图:从任意一点出发,都有到达另一个点的路径。不存在一个或者几个点,使得这个子图加入这些点后,这个子图还满足上一个性质。为什么要限定”在有向图中“而不是”在任
  • 2024-09-15Tarjan
    P3388【模板】割点(割顶)1、注意在遍历时要储存根节点编号,判断时需要特判根节点#include<bits/stdc++.h>usingnamespacestd;constintN=1e5+10;intn,m,r;intdn,dfn[N],low[N],cnt,buc[N];vector<int>e[N];voiddfs(intid){ //标记时间戳 dfn[id]=low[id]
  • 2024-09-13tarjan里的定义
     强连通分量-OIWiki(oi-wiki.org)   从以u为根的子树中的任意点出发。单次到达(从这个点指向某个点,有一条边)的这些点中的dfn的最小值 以v为根的子树,包含在以u为根的子树中,low[v]所用的子节点,一定也可以被low[u],这个点一定在以u为根的子树里,所以用low[v]  从
  • 2024-09-10一文轻松搞定 tarjan 算法(二)(附带 tarjan 题单)
    完结篇:tarjan求割点、点双连通分量、割边(桥)(附40道很好的tarjan题目)。上一篇(tarjan求强连通分量,缩点,求边双)tarjan求割点还是求强联通分量的大致思路捏.算法思路:我们把图中的点分为两种:每一个联通子图搜索开始的根节点和其他点。判断是不是割点的方式如下:对于根
  • 2024-09-09tarjan—算法的神(一)cw
    本篇包含tarjan求强连通分量、边双连通分量、割点部分,tarjan求点双连通分量、桥(割边)在下一篇。伟大的RobertTarjan创造了众多被人们所熟知的算法及数据结构,最著名的如:(本文的)连通性相关的tarjan算法,Splay-Tree,Toptree,tarjan求lca等等。注:有向图的强连通分量、无向
  • 2024-09-09tarjan—算法的神(一)
    本篇包含tarjan求强连通分量、边双连通分量、割点部分,tarjan求点双连通分量、桥(割边)在下一篇。伟大的RobertTarjan创造了众多被人们所熟知的算法及数据结构,最著名的如:(本文的)连通性相关的tarjan算法,Splay-Tree,Toptree,tarjan求lca等等。注:有向图的强连通分量、无向
  • 2024-09-04强连通分量(tarjan)
    前言首先你要知道什么是强连通分量再来,不会的话我给你链接啊!好像上面那个链接已经替代了我:)tarjantarjan这个算法的演示图比较复杂,我推荐看这篇博客,这时你肯定要问了,你都推荐别人的博客了,那我看你干嘛,别急,他没给你代可以给你!我们用\(dfn[x]\)表示点\(x\)dfs序(dfs遍历
  • 2024-08-25tarjan求LCA
    题面如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。思路这次我们要使用的知识点是\(dfs\)和并查集,这个\(tarjan\)是离线的,我们要先把每个点的每一个要跟它求\(LCA\)的点给记录下来,接下来用\(dfs\)跑这么个流程:遍历这个点的每个子结点并进入子节点将子
  • 2024-08-22Tarjan 之 割点 学习笔记
    首先,要求割点,我们需要知道割点是什么割点:是指在无向连通图中,如果删除某个顶点后,图的连通分量增加,则称该顶点为割点好,知道了这个,那我们怎么去求他呢?Tarjan大神给出了一种依然基于时间戳的算法图片来源:董晓算法割点的求法大概就是这样的所以细节还是见代码吧#include<bit