- 2024-11-17书生大模型实训营第4期基础岛第四关:InternLM + LlamaIndex RAG 实践
书生大模型实训营第4期基础岛第四关:InternLM+LlamaIndexRAG实践1.什么是RAG?2.LlamaIndex+InternLMAPI实践2.1LlamaIndex的简单介绍2.2LlamaIndex+InternLMAPI实践2.2.1开发机环境配置2.2.2下载SentenceTransformer模型2.2.3下载NLTK相关资源2.3是
- 2024-11-16书生·共学大模型实战营第4期 L1G4000任务提交
基于LlamaIndex构建自己的RAG知识库,寻找一个问题A在使用LlamaIndex之前浦语API不会回答,借助LlamaIndex后浦语API具备回答A的能力我们选择了一个名为wereader的Github小众项目,这是一个Chrome/Firefox扩展,主要用于微信读书做笔记,对常使用Markdown做笔记的读者比较有帮助。可以发现
- 2024-11-12LlamaIndex 中全局配置Settings的设置使用
Settings是在LlamaIndex工作流/应用程序的索引和查询阶段使用的一组常用资源。您可以使用它来设置全局配置。局部配置(转换、llm、嵌入模型)可以直接传递到使用它们的接口中。Settings是一个简单的单例对象,存在于整个应用程序中。每当没有提供特定组件时,就使用Settings对象
- 2024-10-27浦语学习笔记
官方文档地址:https://github.com/InternLM/Tutorial/tree/camp4/docs/L1/LlamaIndex前置知识检索增强生成(RetrievalAugmentedGeneration,RAG)技术用于更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重,相较于训练模型更易于实现。通
- 2024-09-27使用 LlamaIndex 进行 CRAG 开发用来强化检索增强生成
提升AI模型的准确性与可靠性©作者|NinjaGeek来源|神州问学介绍检索增强生成(RAG)彻底改变了使用大语言模型和利用外部知识库的方式。它允许模型从文档存储的相关索引数据中获取信息用以增强其生成的内容,使其更加准确和信息丰富。然而,RAG并非完全无缺。它有时会检索出不
- 2024-09-22Chainlit集成LlamaIndex实现知识库高级检索(简单融合寻回器)
检索原理**简单融合寻回器**简单融合寻回原理,是利用多个检索器,融合查询最终的结果返回给LLM。此检索器还将通过生成与原始问题相关的问题,用相关问题再次检索多个检索器的数据,把原始问题和相关问题经过多个检索器检索结果整理后交给LLM最最终回复。本次代码示例中,使用简
- 2024-09-22Chainlit集成LlamaIndex实现知识库高级检索(自动合并检索)
检索原理**自动合并检索**自动合并检索原理,和我洗的上一篇文章的检索方案:将文本分割成512大小(一般对应段落大小)和128(一般对句子大小不是严格的句子长度)大小两种分别存储到索引库,再用llama_index的简单融合寻回器,分别从这里个向量库查询。将查询结果融合排序后交给LLM的
- 2024-09-22llm-app-stack
llm-app-stackhttps://github.com/a16z-infra/llm-app-stackakaEmergingArchitecturesforLLMApplicationsThisisalistofavailabletools,projects,andvendorsateachlayeroftheLLMappstack. LlamaIndexvsLangChainhttps://www.datacamp.com
- 2024-09-13autogen示例九:llamaindex的智能pandasai
相信对于许多从事Python数据分析工作的小伙伴来说,大家都对尝试使用PandasAI所带来的智能化便捷性充满兴趣。然而,由于缺乏OpenAI的API密钥,许多人只能望洋兴叹,无法真正体验到这一技术带来的便利。 现在有一种替代方案,可以让我们绕过这个限制,那
- 2024-09-12如何通过LlamaIndex工作流程简化我的研究和演示
LlamaIndex最近引入了一项新功能:Workflows。这对于那些希望创建兼具可靠性和灵活性的AI解决方案的人来说非常有用。为什么呢?因为它允许你通过控制流程定义定制化步骤。它支持循环、反馈和错误处理。就像一个AI驱动的流水线。但与通常实施为有向无环图(DAG)的典型流水线不同,Workf
- 2024-08-25浦语Camp3:基础4-Llamaindex RAG实践
基础任务任务要求:基于LlamaIndex构建自己的RAG知识库,寻找一个问题A在使用LlamaIndex之前InternLM2-Chat-1.8B模型不会回答,借助LlamaIndex后InternLM2-Chat-1.8B模型具备回答A的能力,截图保存。需要A10030%内存!!!安装环境:condacreate-nllamaindexpython=3.1
- 2024-08-16Llamaindex RAG实践
任务要求:基于LlamaIndex构建自己的RAG知识库,寻找一个问题A在使用LlamaIndex之前InternLM2-Chat-1.8B模型不会回答,借助LlamaIndex后InternLM2-Chat-1.8B模型具备回答A的能力,截图保存。1.直接询问,不是预期结果2.结合RAG询问,得到符合资料的回答3.运行,使用端口转
- 2024-08-08使用LlamaIndex和GPT-4V进行多模态图像检索
在本文中,我们将演示如何使用LlamaIndex结合GPT-4V和CLIP来实现图像到图像的检索。该过程包括从维基百科下载图像和文本,构建多模态索引,利用GPT-4V进行图像相关性推理,并展示检索结果。步骤1.安装所需的库%pipinstallllama-index-multi-modal-llms-openai%pipinstalll
- 2024-08-03Llamaindex RAG实践
任务要求:基于LlamaIndex构建自己的RAG知识库,寻找一个问题A在使用LlamaIndex之前InternLM2-Chat-1.8B模型不会回答,借助LlamaIndex后InternLM2-Chat-1.8B模型具备回答A的能力,截图保存。本文将分为以下几个部分来介绍,如何使用LlamaIndex来部署InternLM21.8B(以
- 2024-07-24LangChain vs LlamaIndex
LangChainvsLlamaIndexhttps://www.datacamp.com/blog/langchain-vs-llamaindexWhilebothframeworkssupportintegrationwithexternaltoolsandservices,theirprimaryfocusareassetthemapart.LangChainishighlymodularandflexible,focusingoncreat
- 2024-07-20Langchain 与 LlamaIndex:LLM 应用开发框架的比较与使用建议
Langchain和Llamaindex是两种广泛使用的主流LLM应用开发框架。两者有什么不同?我们该如何使用?以下我根据各类资料和相关文档做了初步选型。一、Langchain1.适用场景(1)需要构建灵活、可扩展的通用应用程序。(2)需要复杂的工作流程支持。(3)需要复杂的交互和上下文保留功能。(4
- 2024-07-18Datawhale AI 夏令营——CPU部署大模型(LLM天池挑战赛)——Task2与3学习笔记
Task2的任务是组队+寻找灵感,这里不作阐述;Task3的任务是实现RAG应用,阅读文档并观看卢哥的直播后,结合个人经验做个分享。 运行大语言模型,对LLM使用的加深,我们发现,在使用过程中,大模型会有很多幻觉出现。为了解决幻觉,科研人员提出了各种各样的方案
- 2024-05-30使用 LlamaIndex + Eleasticsearch ,进行 RAG 检索增强生成
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。合集:《大模型面试宝典》(2024版)正式发
- 2024-05-22LlamaIndex RAG 和ReAct结合使用
LlamaIndexRAG和ReAct结合使用示例代码:importosos.environ['OpenAI_API_KEY']='sk-pxxxxhU7F5Zrc'os.environ['SERPAPI_API_KEY']='950fbdxxxx9b0fexxxx'#加载电商财报数据fromllama_index.coreimportSimpleDirectoryReaderA_doc
- 2024-05-22整合LlamaIndex与LangChain构建高级的查询处理系统
构建大型语言模型应用程序可能会颇具挑战,尤其是当我们在不同的框架(如Langchain和LlamaIndex)之间进行选择时。LlamaIndex在智能搜索和数据检索方面的性能令人瞩目,而LangChain则作为一个更加通用的应用程序框架,提供了更好的与各种平台的兼容性。本篇文章将介绍如何将LlamaIndex和La
- 2024-05-07检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统什么是RAGLLM会产生误导性的“幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。正是在这样的背景下,检索增强生成技术(Retrieval-AugmentedGeneration,RAG
- 2024-04-14LlamaIndex 是什么
LlamaIndex是一个基于LLM(大语言模型)的应用程序数据框架,适用于受益于上下文增强的场景。这类LLM系统被称为RAG(检索增强生成)系统。LlamaIndex提供了必要的抽象层,以便更容易地摄取、结构化和访问私有或特定领域的数据,从而安全可靠地将这些数据注入LLM中,以实现更准确的文
- 2024-04-14LlamaIndex 高层次概念
本篇内容为您快速介绍在构建基于大型语言模型(LLM)的应用程序时会频繁遇到的一些核心概念。 增强检索生成(RAG)LLM是基于海量数据训练而成,但并未涵盖您的具体数据。增强检索生成(Retrieval-AugmentedGeneration,RAG)通过将您的数据添加至LLM已有的数据集中,解决了这一问题。
- 2024-04-14LlamaIndex 安装与配置(不含OpenAI)
pipinstallllama-index这是一个包含以下组件的启动包:llama-index-corellama-index-legacy(暂时包含)llama-index-llms-openaillama-index-embeddings-openaillama-index-program-openaillama-index-question-gen-openaillama-index-agent-openaillama-index-rea
- 2024-04-14LlamaIndex 起步教程(本地模型)
提示:确保您已先按照自定义安装步骤操作。这是一个著名的“五行代码”起步示例,使用本地LLM(大语言模型)和嵌入模型。我们将使用BAAI/bge-small-en-v1.5作为嵌入模型,通过Ollama服务的Mistral-7B作为LLM。下载数据本示例使用PaulGraham的文章《WhatIWorkedOn》文本