• 2024-10-30快速发论文idea:KAN+transformer,结合创新,效果翻倍。
    2024深度学习发论文&模型涨点之—KAN+TransformerKAN+Transformer是一种结合了Kolmogorov-ArnoldNetworks(KAN)和Transformer架构的新型神经网络模型。这种结合模型利用了KAN的灵活性和可解释性,以及Transformer的强大表示能力和序列处理能力,以提高复杂数据任务的效率和准确性。
  • 2024-10-27YOLOv8改进 | Conv篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类型激活函数的KANConv2d)
    一、本文介绍本文给大家带来的改进机制是2024最新的,Kolmogorov-Arnold网络(ConvolutionalKANs),这种架构旨在将Kolmogorov-Arnold网络(KANs)的非线性激活函数整合到卷积层中,从而替代传统卷积神经网络(CNNs)的线性变换。与标准的卷积神经网络(CNN)相比,KANConv层引入了更多的参数,因
  • 2024-08-24Kolmogorov-Arnold Networks——高效、可解释的神经网络的新前沿
    引言神经网络一直处于人工智能发展的前沿,从自然语言处理和计算机视觉到战略游戏、医疗保健、编码、艺术甚至自动驾驶汽车,无所不包。然而,随着这些模型的规模和复杂性不断扩大,它们的局限性正成为重大缺陷。对大量数据和计算能力的需求不仅使它们成本高昂,而且还引发了可持续
  • 2024-08-17Kolmogorov-Smirnov 检验 + k 样本 Anderson-Darling 检验 + 贝叶斯估计 + 期望方差
    KS检验是基于Kolmogorovdistribution,指的是\[K=\sup_{t\in[0,1]}\left\lvertB(t)\right\rvert\]式中\(B(t)\)是布朗桥。\(K\)的累积分布函数是\[\Pr(K\lex)=1-2\sum_{k=1}^\infty(-1)^{k-1}\mathrme^{-2k^2x^2}=\frac{\sqrt{2\pi}}x\sum_{k=1}^\infty\mathrme^
  • 2024-08-11Kolmogorov-Smirnov 检验 + k 样本 Anderson-Darling 检验 + 贝叶斯估计 + 期望/方差
    KS检验是基于Kolmogorovdistribution,指的是\[K=\sup_{t\in[0,1]}\left\lvertB(t)\right\rvert\]式中\(B(t)\)是布朗桥。\(K\)的累积分布函数是\[\Pr(K\lex)=1-2\sum_{k=1}^\infty(-1)^{k-1}\mathrme^{-2k^2x^2}=\frac{\sqrt{2\pi}}x\sum_{k=1}^\infty\mathrme^
  • 2024-07-10KAN: Kolmogorov-Arnold Networks (arXiv 2024)
    KAN官方代码库:https://github.com/KindXiaoming/pykan官方tutorials:https://kindxiaoming.github.io/pykan/目录AbstractKolmogorov–ArnoldNetworks(KAN)Kolmogorov-ArnoldRepresentationtheoremKANarchitectureImplementationdetailsKAN’sApproximation
  • 2024-07-07图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
    MLP是多层感知器(MultilayerPerceptron)的缩写,它是一种前馈人工神经网络。MLP由至少三层节点组成:一个输入层、一个或多个隐藏层以及一个输出层。每一层的节点都与下一层的每个节点相连,并且每个连接都有一个权重。MLP通过这些权重和节点的激活函数来学习输入数据的模式。Kolmogorov
  • 2024-07-02图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
    KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Arnold表示定理的属性,该定理允许神经网络的激活函数在边缘上执行,这使得激活函数“可学习”并改进它们。目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验