介绍
视频地址:https://www.bilibili.com/video/av78062009/
相关源码:https://github.com/anonymousGiga/Rust-link-list
详细内容
本节我们使用栈来实现双端队列。
实现栈
栈的实现基本上和最开始的单链表的实现差不多,如下:
pub struct Stack<T> {
head: Link<T>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<T> Stack<T> {
pub fn new() -> Self {
Stack { head: None }
}
fn push_node(&mut self, mut node: Box<Node<T>>) {
node.next = self.head.take();
self.head = Some(node);
}
pub fn push(&mut self, elem: T) {
let node = Box::new(Node {
elem: elem,
next: None,
});
self.push_node(node);
}
fn pop_node(&mut self) -> Option<Box<Node<T>>> {
self.head.take().map(|mut node| {
self.head = node.next.take();
node
})
}
pub fn pop(&mut self) -> Option<T> {
self.pop_node().map(|node| {
node.elem
})
}
pub fn peek(&self) -> Option<&T> {
self.head.as_ref().map(|node| {
&node.elem
})
}
pub fn peek_mut(&mut self) -> Option<&mut T> {
self.head.as_mut().map(|node| {
&mut node.elem
})
}
}
impl<T> Drop for Stack<T> {
fn drop(&mut self) {
let mut link = self.head.take();
while let Some(mut node) = link {
link = node.next.take();
}
}
}
实现双端队列
代码如下:
pub struct List<T> {
left: Stack<T>,
right: Stack<T>,
}
impl<T> List<T> {
pub fn new() -> Self {
List { left: Stack::new(), right: Stack::new() }
}
pub fn push_left(&mut self, elem: T) { self.left.push(elem) }
pub fn push_right(&mut self, elem: T) { self.right.push(elem) }
pub fn pop_left(&mut self) -> Option<T> { self.left.pop() }
pub fn pop_right(&mut self) -> Option<T> { self.right.pop() }
pub fn peek_left(&self) -> Option<&T> { self.left.peek() }
pub fn peek_right(&self) -> Option<&T> { self.right.peek() }
pub fn peek_left_mut(&mut self) -> Option<&mut T> { self.left.peek_mut() }
pub fn peek_right_mut(&mut self) -> Option<&mut T> { self.right.peek_mut() }
pub fn go_left(&mut self) -> bool {
self.left.pop_node().map(|node| {
self.right.push_node(node);
}).is_some()
}
pub fn go_right(&mut self) -> bool {
self.right.pop_node().map(|node| {
self.left.push_node(node);
}).is_some()
}
}
测试及完整代码
如下:
pub struct Stack<T> {
head: Link<T>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<T> Stack<T> {
pub fn new() -> Self {
Stack { head: None }
}
fn push_node(&mut self, mut node: Box<Node<T>>) {
node.next = self.head.take();
self.head = Some(node);
}
pub fn push(&mut self, elem: T) {
let node = Box::new(Node {
elem: elem,
next: None,
});
self.push_node(node);
}
fn pop_node(&mut self) -> Option<Box<Node<T>>> {
self.head.take().map(|mut node| {
self.head = node.next.take();
node
})
}
pub fn pop(&mut self) -> Option<T> {
self.pop_node().map(|node| {
node.elem
})
}
pub fn peek(&self) -> Option<&T> {
self.head.as_ref().map(|node| {
&node.elem
})
}
pub fn peek_mut(&mut self) -> Option<&mut T> {
self.head.as_mut().map(|node| {
&mut node.elem
})
}
}
impl<T> Drop for Stack<T> {
fn drop(&mut self) {
let mut link = self.head.take();
while let Some(mut node) = link {
link = node.next.take();
}
}
}
pub struct List<T> {
left: Stack<T>,
right: Stack<T>,
}
impl<T> List<T> {
pub fn new() -> Self {
List { left: Stack::new(), right: Stack::new() }
}
pub fn push_left(&mut self, elem: T) { self.left.push(elem) }
pub fn push_right(&mut self, elem: T) { self.right.push(elem) }
pub fn pop_left(&mut self) -> Option<T> { self.left.pop() }
pub fn pop_right(&mut self) -> Option<T> { self.right.pop() }
pub fn peek_left(&self) -> Option<&T> { self.left.peek() }
pub fn peek_right(&self) -> Option<&T> { self.right.peek() }
pub fn peek_left_mut(&mut self) -> Option<&mut T> { self.left.peek_mut() }
pub fn peek_right_mut(&mut self) -> Option<&mut T> { self.right.peek_mut() }
pub fn go_left(&mut self) -> bool {
self.left.pop_node().map(|node| {
self.right.push_node(node);
}).is_some()
}
pub fn go_right(&mut self) -> bool {
self.right.pop_node().map(|node| {
self.left.push_node(node);
}).is_some()
}
}
#[cfg(test)]
mod test {
use super::List;
#[test]
fn walk_aboot() {
let mut list = List::new(); // [_]
list.push_left(0); // [0,_]
list.push_right(1); // [0, _, 1]
assert_eq!(list.peek_left(), Some(&0));
assert_eq!(list.peek_right(), Some(&1));
list.push_left(2); // [0, 2, _, 1]
list.push_left(3); // [0, 2, 3, _, 1]
list.push_right(4); // [0, 2, 3, _, 4, 1]
while list.go_left() {} // [_, 0, 2, 3, 4, 1]
assert_eq!(list.pop_left(), None);
assert_eq!(list.pop_right(), Some(0)); // [_, 2, 3, 4, 1]
assert_eq!(list.pop_right(), Some(2)); // [_, 3, 4, 1]
list.push_left(5); // [5, _, 3, 4, 1]
assert_eq!(list.pop_right(), Some(3)); // [5, _, 4, 1]
assert_eq!(list.pop_left(), Some(5)); // [_, 4, 1]
assert_eq!(list.pop_right(), Some(4)); // [_, 1]
assert_eq!(list.pop_right(), Some(1)); // [_]
assert_eq!(list.pop_right(), None);
assert_eq!(list.pop_left(), None);
}
}