第十二章学习笔记
一、 教材内容总结
摘要:
本章讨论了块设备 I/O 和缓冲区管理;解释了块设备 I/O 的原理和 I/O 缓冲的优点;论述了 Unix 的缓冲区管理算法。
12.1块设备I/O缓冲区
I/O 缓冲的基本原理非常简单。文件系统使用一系列 I/O 缓冲区作为块设备的缓存内存。当进程试图读取 (dev, blk) 标识的磁盘块时,它首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。如果该缓冲区存在并且包含有效数据,那么它只需从缓冲区中读取数据,而无须再次从磁盘中读取数据块。如果该绥冲区不存在,它会为磁盘块分配一个缓冲区,将数据从磁盘读入缓冲区,然后从缓冲区读取数据。当某个块被读入时,该缓冲区将被保存在缓冲区缓存中,以供任意进程对同一个块的下一次读/写请求使用。同样,当进程写入磁盘块时,它首先会获取一个分配给该块的缓冲区。然后,它将数据写入绥冲区,将缓冲区标记为脏,以延迟写入,并将其释放到缓冲区缓存中。由于脏缓冲区包含有效的数据,因此可以使用它来满足对同一块的后续读/写请求,而不会引起实际磁盘I/O。脏缓冲区只有在被重新分配到不同的块时才会写入磁盘。
12.2 Unix I/O缓冲区管理算法
I/O缓冲区:内核中的一系列NBUF缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。
typdef struct buf{
struct buf *next_free; //freelist pointer
struct buf *next_dev; //dev_list pointer
int dev,blk; //assigned disk block;
int opcode; //READ|WRITE
int dirty; //buffer data modified
int async; //ASYNC write flag
int valid; //buffer data valid
int busy; //buffer is in use
int wanted; some process needs this buffer
struct, semaphore lock=l ; //buffer locking semaphore; value=L
struct semaphore iodone=0; //for process to wait for I/O completion;
char buf[BLKSIZE]; //block data area
} BUFFER;
BUFFER buf[NBUF], *freelist; // NBUF buffers and free buffer list
设备表:每个块设备用一个设备表结构表示。
struct devtab{
u16 dev; // major device number
BUFFER dev_list; // device buffer list
BUFFERio_queue // device I/0 queue
}devtab[NDEV];
I/O 缓冲区:内核中的一系列NBUF缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。缓冲区结构体由两部分组成:用于缓冲区管理的缓冲头部分和用于数据块的数据部分。为了保护内核内存,状态字段可以定义为一个位向扭,其中每个位表示一个唯一的状态条件。
设备表:每个块设备用一个设备表结构表示。
缓冲区初始化:当系统启动时,所有I/O缓冲区都在空闲列表中,所有设备列表和I/O队列均为空。
缓冲区列表: 当缓冲区分配给 (dev, blk) 时, 它会被插人设备表的dev_list 中。 如果缓冲区当前正在使用, 则会将其标记为BUSY (繁忙)并从空闲列表中删除。繁忙缓冲区也可能会在设备表的 I/O 队列中。 由于一个缓冲区不能同时处于空闲状态和繁忙状态, 所以可通过使用相同的 next_free 指针来维护设备 I/O 队列。 当缓冲区不再繁忙时, 它会被释放回空闲列表, 但仍保留在 dev_list 中, 以便可能重用。 只有在重新分配时, 缓冲区才可能从一个 dev_list 更改到另一个 dev_list 中。 如前文所述, 读/写磁盘块可以表示为 bread 、 bwrite 和dwrite, 它们都要依赖于 getblk 和 brelse。 因此, getblk 和 brelse 构成了 Unix 缓冲区管理方案的核心。
Unix算法的缺点
效率低下:该算法依赖于重试循环。
缓存效果不可预知:在Unix算法中,每个释放的缓冲区都可被获取,如果缓冲区 由需要空闲缓冲区的进程获取,那么将会重新分配缓冲区,即使有些进程仍然需要当前的缓冲区。
可能会出现饥饿:Unix算法基于“自由经济”原则,即每个进程都有尝试的机会,但不能保证成功,因此,可能会出现进程饥饿。
该算法使用只适用丁单处理器系统的休眠/唤醒操作
12.3 新的I/O缓冲区管理算法
计数信号量可用来表示可用资源的数量,例如∶空闲缓冲区的数量。
当多个进程等待一个资源时,信号量上的V操作只会释放一个等待进程,该进程不必重试,因为它保证拥有资源。
12.4 PV算法
PV算法的优越性:
缓冲区唯一性
无重试循环
无不必要唤醒
缓存效果
无死锁和饥饿
12.5 I/O缓冲区管理算法比较
1.系统组织
用户界面:这是模拟系统的用户界面部分。它会提示输人命令、显示命令执行、显示系统状态和执行结果等。在开发过程中,读者可以手动输入命令来执行任务。在最后测试过程中,任务应该有自己的输入命令序列。例如,各任务可以读取包含命令的输入文件。
2.多任务处理系统
3.磁盘驱动程序
start io():维护设备I/O队列,并对I/O 队列中的缓冲区执行 I/O操作。
中断处理程序:在每次I/O操作结束时,磁盘控制器会中断CPU。当接收到中断后,中断处理程序首先从 IntStatus中读取中断状态。
4.磁盘中断
从磁盘控制器到CPU的中断由 SIGUSR1(#10)信号实现。在每次I/O操作结束时,磁盘控制器会发出kill(ppid,SIGUSR1)系统调用,向父进程发送 SIGUSR1信号,充当虚拟CPU中断。
为防止竞态条件,磁盘控制器必须要从CPU接收一个中断确认,才能再次中断。
5.虚拟磁盘
使用Linux系统调用lseek()、read()和 write(),我们可以支持虚拟磁盘上的任何块I/O操作。
6.磁盘控制器
磁盘控制器是主进程的一个子进程。因此,它与CPU 端独立运行,除了它们之间的通信通道,通信通道是 CPU和磁盘控制器之间的接口。通信通道由主进程和子进程之间的管道实现。
命令:从 CPU到磁盘控制器的I/O命令。
二、实践部分:
实践代码:
int main (){
FILE* fd;
fd=fopen("/src/hello","r");
if(NULL==fd){
perror("can not open file");
return -1;
}
return 0;
}
实验截图: