「学习笔记」组合计数与中国剩余定理
点击查看目录
目录
Warning:
本文内含有大量 $\LaTeX$ 公式,可能会引起不适与页面卡顿.
知识点
排列
\(n\) 个元素里选出 \(m\) 个元素排成一列的方案数.
计算公式:
\[A_{n}^{m}=n(n-1)(n-2)···(n-m+1)=\frac{n!}{(n-m)!}\tag{1} \]还有一种特殊情况:全排列
\[A_{n}^{n}=n!\tag{2} \]错排列
求对于一个排列 \(1\sim n\),满足任意 \(i\) 都不在第 \(i\) 位上的排列有多少个.
递推公式为:
\[D_{n}=(n-1)(D_{n-1}+D_{n-2})\tag{3} \]证明点这里
我们先把 \(n\) 放在第 \(n\) 位,然后对于任意一个有 \(n-1\) 个数的排列,我们分情况讨论:
- 这个排列满足要求:随便找一个数和 \(n\) 换,方案数为 \((n-1)D_{n-1}\).
- 这个排列有且只有一位 \(k(1\le k\le n-1)\) 不满足要求:把 \(k\) 和 \(n\) 交换过来,方案数为 \((n-1)D_{n-2}\).
- 这个排列有 \(k(2\le k\le n-1)\) 位不满足要求:不可能一次换完,应该在计算 \(D_{n-1}\) 时就已经换完了.
合并一下,总方案数为:
\[D_{n}=(n-1)(D_{n-1}+D_{n-2}) \]组合数
式子
\(n\) 个元素里选出一个 \(m\) 个元素的集合的方案数.
组合与排列的区别:组合没有顺序
计算公式:
\[\dbinom{n}{m}=\frac{A^{m}_{n}}{A^{m}_{m}}=\frac{n!}{m!(n-m)!}\tag{4} \]可以理解为排列数去掉顺序.
一些性质
\[\dbinom{n}{m}=\dbinom{n}{n-m}=\dbinom{n-1}{m}+\dbinom{n-1}{m-1}\tag{5} \]卢卡斯定理
用于求较大的且模数 \(p\in\mathbb{P}\) 的组合数.
公式:
\[\dbinom{n}{m}\bmod p=\dbinom{\lfloor n/p\rfloor}{\lfloor m/p\rfloor}\cdot\dbinom{n\bmod p}{m\bmod p}\bmod p\tag{6} \]谔项式定理
公式:
\[(a+b)^n=\sum_{i=0}^{n}\dbinom{n}{i}a^{i}b^{n-i}\tag{7} \]点击查看证明
数学归纳法.
\[\begin{aligned} (a+b)^1&=a^0b^1+a^1b^0=a+b\\ (a+b)^{n+1} &=(a+b)\sum_{i=0}^{n}\dbinom{n}{i}a^{i}b^{n-i}\\ &=\sum_{i=0}^{n}\dbinom{n}{i}a^{i+1}b^{n-i}+\sum_{i=0}^{n}\dbinom{n}{i}a^{i}b^{n+1-i}\\ &=\sum_{i=1}^{n+1}\dbinom{n}{i-1}a^{i}b^{n+1-i}+\sum_{i=0}^{n}\dbinom{n}{i}a^{i}b^{n+1-i}\\ &=a^{n+1}b^{0}+a^{0}b^{n+1}+\sum_{i=1}^{n}\left(\dbinom{n}{i-1}+\dbinom{n}{i}\right)a^{i}b^{n+1-i}\\ &=\dbinom{n+1}{n+1}a^{n+1}b^{0}+\dbinom{n+1}{0}a^{0}b^{n+1}+\sum_{i=1}^{n}\dbinom{n+1}{i}a^{i}b^{n+1-i}\\ &=\sum_{i=0}^{n+1}\dbinom{n+1}{i}a^{i}b^{n+1-i}\\ \end{aligned} \]组合意义
显然展开后每一项都是 \(n\) 次的.
那么考虑构成 \(a\) 为 \(i\) 次的项的方案数.
显然为从 \(n\) 个 \(a\) 里选出 \(i\) 个 \(a\) 的方案数,即 \(\dbinom{n}{i}\).
那么这一项为 \(\dbinom{n}{i}a^{i}b^{n-i}\).
全部展开后就是 \(\sum_{i=0}^{n}\dbinom{n}{i}a^{i}b^{n-i}\).
谔项式反演
相当有趣但相当长.
这里挂几个式子,以后有机会单独整理一下学习笔记并挂在这里.
形式零
\[f(n)=\sum_{i=0}^{n}(-1)^i\dbinom{n}{i}g(i)\Longleftrightarrow g(n)=\sum_{i=0}^{n}(-1)^i\dbinom{n}{i}f(i)\tag{8} \]形式一
\[f(n)=\sum_{i=0}^{n}\dbinom{n}{i}g(i)\Longleftrightarrow g(n)=\sum_{i=0}^{n}(-1)^{n-i}\dbinom{n}{i}f(i)\tag{9} \]形式谔
\[f(n)=\sum_{i=n}^{m}\dbinom{i}{n}g(i)\Longleftrightarrow g(n)=\sum_{i=n}^{m}(-1)^{i-n}\dbinom{i}{n}f(i)\tag{10} \]小技巧:线性推阶乘逆元
好像是 SoyTony 教的我,%%%
求完阶乘后求出最后一个的逆元,然后用一点阶乘的逆元的性质,反推回去即可.
在组合题中及其常用,可以线性预处理后直接 \(\Theta(1)\) 求组合数.
点击查看代码
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1;
_for (i, 1, n) fac[i] = fac[i - 1] * i % P;
inv[n] = FastPow (fac[n], P - 2);
for_ (i, n - 1, 0) inv[i] = inv[i + 1] * (i + 1) % P;
return;
}
中国剩余定理(CRT)
解决如下形式的方程组:
\[\begin{cases} x \equiv a_1 \pmod{m_1}\\ x \equiv a_2 \pmod{m_2}\\ \dots\\ x \equiv a_n \pmod{m_n}\\ \end{cases} \]其中,\(x,a_i,m_i\) 均为正整数,保证 \(m_i\) 互质.
做法
令 \(M=\prod_{i=1}^{n}m_i\),\(n_i=\frac{M}{m_i}\),\(n_i^{-1}\) 表示 \(n_i\) 在膜 \(m_i\) 意义下的逆元.
答案是:
\[\sum_{i=1}^{n}a_i n_i n_i^{-1}\pmod{M} \]注意:\(m_i\) 互质但 \(m_i\) 不一定是质数,求逆元不能用费马小定理,只能用扩欧!
证明
首先解这样一组方程:
\[\begin{cases} x_i \equiv 0 \pmod{m_1}\\ \dots\\ x_i \equiv a_i \pmod{m_i}\\ \dots\\ x_i \equiv 0 \pmod{m_n}\\ \end{cases} \]显然,\(x_i=a_i n_i n_i^{-1}\) 是一组合法解:
-
对于第 \(i\) 组方程,由于在膜 \(m_i\) 意义下 \(n_i n_i^{-1}=1\),所以 \(a_i n_i n_i^{-1} \equiv a_i \pmod{m_i}\).
-
对于第 \(j(j\neq i)\) 组方程,由于 \(n_i\) 为 \(m_j\) 倍数,所以 \(a_j n_j n_j^{-1} \equiv 0 \pmod{m_j}\).
那么如何合并?可以发现 \(x_i+x_j\) 仍是原方程的解,因此答案就是 \(\sum_{i=1}^{n}x_i\pmod{M}=\sum_{i=1}^{n}a_i n_i n_i^{-1}\pmod{M}\).
EXCRT
解决问题没有变,但 \(m_i\) 不互质.
该算法主要运用合并的思想.
首先解这个方程:
\[\begin{cases} x \equiv a_1 \pmod{m_1}\\ x \equiv a_2 \pmod{m_2}\\ \end{cases} \]其中 \(m_1,m_2\) 不互质.
转化为不定方程:
\[\begin{aligned} x &= a_1 + p \cdot m_1\\ &= a_2 + q \cdot m_2\\ \end{aligned} \]进行一个移项:
\[p \cdot m_1 - q \cdot m_2 = a_2 - a_1 \]当 \(a_2-a_1\) 不能被 \(\gcd(m_1,m_2)\) 整除时,原方程无解,否则一定可以解出来一组 \(p,q\).
那么最后可以合并得到一个方程:
\[x \equiv p \cdot m_1 + a_1 \pmod{\operatorname{lcm}(m_1,m_2)} \]按这种方法两两合并,最后得到答案.
ExLucas
因为前置比较多,所以放到最后写.
问题
求:
\[\dbinom{n}{m} \bmod{P} (P\in \mathbb{N^*}) \]拆为 CRT
\(P\) 不一定是质数,那么我们考虑将它拆成质数解决.
设 \(P=p_1^{k_1}\cdot p_2^{k_2}\cdot p_3^{k_3}\cdots p_t^{k_t}(p_i\in \mathbb{P})\).
那么可以列出方程:
\[\begin{cases} x \equiv \dbinom{n}{m} \pmod{p_1^{k_1}}\\ x \equiv \dbinom{n}{m} \pmod{p_2^{k_2}}\\ \dots\\ x \equiv \dbinom{n}{m} \pmod{p_t^{k_t}}\\ \end{cases} \]可以发现 \(x\) 就是最终结果,这里可以使用 CRT 解决.
那么现在把焦点放在这个方程上:
\[x \equiv \dbinom{n}{m} \pmod{p^k}\\ \]构造余数
我们现在需要解决的是计算 \(\dbinom{n}{m} \bmod{p^k}\),即 \(\dfrac{n!}{m!(n-m)!} \bmod{p^k}\).
然而 \(n!,m!\) 和 \((n-m)!\) 可能与 \(p^k\) 不互质,不能直接求逆元,那么我们就把它们的因数中的 \(p\) 提前去掉.
我们设 \(g(n)\) 表示 \(n\) 的因数里有多少个 \(p\), \(f(n)\) 表示 \(\dfrac{n!}{p^{g(n)}}\).
那么原式就是:
\[\dfrac{f(n)}{f(m)f(n-m)} \times P^{g(n)-g(m)-g(n-m)} \bmod{p^k} \]构造函数
现在我们只需要解决函数 \(f(n)\) 和 \(g(n)\) 即可,那么如何计算?
首先我们拆分一下 \(n!\):
\[\begin{aligned} n! &=1\cdot2\cdot3\cdots n&\pmod{p^k}\\ &=(p\cdot2p\cdot3p\cdots\left\lfloor\frac{n}{p}\right\rfloor p)(1\cdot2\cdot3\cdots n)&\pmod{p^k}\\ &=p^{\left\lfloor\frac{n}{p}\right\rfloor}(\left\lfloor\frac{n}{p}\right\rfloor)!(\prod_{i=1,i\bmod p\neq0}^{n}i)&\pmod{p^k}\\ &=p^{\left\lfloor\frac{n}{p}\right\rfloor}(\left\lfloor\frac{n}{p}\right\rfloor)!(\prod_{i=1,i\bmod p\neq0}^{p^k}i)(\prod_{i=p^k+1,i\bmod p\neq0}^{2p^k}i)\cdots(\prod_{i=p^k(\left\lfloor\frac{n}{p^k}\right\rfloor-1)+1,i\bmod{p}\neq0}^{p^k\left\lfloor\frac{n}{p^k}\right\rfloor}i)(\prod_{i=p^k\left\lfloor\frac{n}{p^k}\right\rfloor+1,i\bmod{p}\neq0}^{n}i)&\pmod{p^k}\\ &=p^{\left\lfloor\frac{n}{p}\right\rfloor}(\left\lfloor\frac{n}{p}\right\rfloor)!(\prod_{i=1,i\bmod p\neq0}^{p^k}i)(\prod_{i=1,i\bmod{p}\neq0}^{p^k}i)\cdots(\prod_{i=1,i\bmod{p}\neq0}^{p^k}i)(\prod_{i=p^k\left\lfloor\frac{n}{p^k}\right\rfloor+1,i\bmod{p}\neq0}^{n}i)&\pmod{p^k}\\ &=p^{\left\lfloor\frac{n}{p}\right\rfloor}(\left\lfloor\frac{n}{p}\right\rfloor)!(\prod_{i=1,i\bmod{p}\neq0}^{p^k}i)^{\left\lfloor\frac{n}{p^k}\right\rfloor}(\prod_{i=1,i\bmod{p}\neq0}^{n\bmod{p^k}}i)&\pmod{p^k} \end{aligned} \]我们的目的是除去 \(p\),因此 \(p^{\left\lfloor\frac{n}{p}\right\rfloor}\) 应去除.\((\left\lfloor\frac{n}{p}\right\rfloor)!\) 里还可能会有 \(p\),所以最后式子为:
\[f(n)=f(\left\lfloor\frac{n}{p}\right\rfloor)(\prod_{i=1,i\bmod{p}\neq0}^{p^k}i)^{\left\lfloor\frac{n}{p^k}\right\rfloor}(\prod_{i=1,i\bmod{p}\neq0}^{n\bmod{p^k}}i)\pmod{p^k} \]边界为 \(f(0)=1\).
从刚才的式子也可以看出来,每次递推会诞生 \(\left\lfloor\frac{n}{p}\right\rfloor\) 个 \(p\),由于它还在往下递推,所以还会产生 \(g(\left\lfloor\frac{n}{p}\right\rfloor)\) 个 \(p\).
那么递推式为:
\[g(n)=\left\lfloor\frac{n}{p}\right\rfloor+g(\left\lfloor\frac{n}{p}\right\rfloor) \]代码
点击查看代码
const ll N = 1e5 + 10, INF = 1ll << 40;
namespace MathBasic {
inline void GetFactor (ll x, std::vector <ll>& f1, std::vector <ll>& f2) {
_for (i, 2, x) {
if (!(x % i)) {
f1.push_back (i), f2.push_back (0);
while (!(x % i)) ++f2[f2.size () - 1], x /= i;
}
}
return;
}
inline ll FastPow (ll a, ll b, ll MOD = INF) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % MOD;
a = a * a % MOD, b >>= 1;
}
return ans;
}
ll ExGcd (ll a, ll b, ll& x, ll& y) {
if (!b) { x = 1, y = 0;return a; }
ll g = ExGcd (b, a % b, x, y), _x = x;
x = y, y = _x - y * (a / b);
return g;
}
inline ll Inv (ll a, ll P) {
ll x, y; ExGcd (a, P, x, y);
return (x % P + P) % P;
}
}
namespace EXLUCAS {
using namespace MathBasic;
ll FDP (ll x, ll P, ll pk) { //FacDivP
if (x == 0) return 1;
ll ans = 1;
_for (i, 1, pk) if (i % P) ans = ans * i % pk;
ans = FastPow (ans, x / pk, pk);
_for (i, 1, x % pk) if (i % P) ans = ans * (i % pk) % pk;
return FDP (x / P, P, pk) * ans % pk;
}
ll Index (ll x, ll P) {
if (x < P) return 0;
return (x / P) + Index (x / P, P);
}
ll a[N], md[N];
inline ll ExLucas (ll n, ll m, ll P) {
std::vector <ll> p, k;
p.push_back (0), k.push_back (0);
GetFactor (P, p, k);
ll len = p.size () - 1, ans = 0;
_for (i, 1, len) {
md[i] = FastPow (p[i], k[i]);
a[i] = FDP (n, p[i], md[i]) * Inv (FDP (m, p[i], md[i]), md[i]) % md[i] * Inv (FDP (n - m, p[i], md[i]), md[i]) % md[i];
a[i] = a[i] * FastPow (p[i], Index (n, p[i]) - Index (n - m, p[i]) - Index (m, p[i]), md[i]) % md[i];
}
_for (i, 1, len) {
ll q = P / md[i], x, y;
ExGcd (q, md[i], x, y);
ans = (ans + a[i] * q % P * ((x % P + P) % P) % P) % P;
}
return ans;
}
}
例题
排列组合
排队
题意
\(n\) 名男同学,\(m\) 名女同学和两名老师要排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,求一共有多少种排法?
\(n,m\le 2000\)
思路
要分类讨论.
如果两名老师被男生隔开,则方案数为 男生的排列乘老师的排列乘女生的排列
即:
\[n!\times A_{n+1}^{2}\times A_{n+3}^{m} \]如果两名老师被女生隔开,则 用来隔开老师的女生 乘上 老师的排列数 再乘上 这两名老师与这名女生可插的空 的方案数为 \(2m(n+1)\),再乘上男生的排列数和剩余女生的排列数得到:
\[2m(n+1)\times n!\times A_{n+2}^{m-1} \]合并一下可得:
\[n!(A_{n+1}^{2}\times A_{n+3}^{m}+2m(n+1)\times A_{n+2}^{m-1}) \]但是由于 \(n,m\le 2000\),要手写高精才能过……
Code
点击查看代码
const ll N = 10000, k = 1000000000;
ll n, m;
class BigNum {
public:
ll len = 0, a[N] = {0};
BigNum () { memset(a, 0, sizeof(a));}
inline void In (ll num){
while (num) {
a[++ len] = num % k;
num /= k;
}
return;
}
inline void Out () {
for_(i, len, 1)
printf((i == len ? "%lld" : "%.9lld"), a[i]);
if (!len) puts("0");
puts("");
return;
}
void operator = (BigNum another) {
len = another.len;
_for(i, 1, len) a[i] = another.a[i];
return;
}
BigNum operator + (BigNum another) {
BigNum answer;
answer.len = max(len, another.len);
_for(i, 1, answer.len) {
answer.a[i] += a[i] + another.a[i];
answer.a[i + 1] += answer.a[i] / k;
answer.a[i] %= k;
}
while (answer.a[answer.len + 1]) ++ answer.len;
return answer;
}
BigNum operator * (BigNum another) {
BigNum answer;
answer.len = len + another.len - 1;
_for(i, 1, answer.len) {
_for(j, 1, another.len) {
answer.a[i + j - 1] += a[i] * another.a[j];
answer.a[i + j] += answer.a[i + j - 1] / k;
answer.a[i + j - 1] %= k;
}
}
while (answer.a[answer.len + 1]) ++ answer.len;
return answer;
}
} mm, nn, ans;
namespace SOLVE {
inline ll rnt () {
ll x = 0, w = 1; char c = getchar();
while (!isdigit(c)) { if (c == '-') w = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * w;
}
inline void In () {
n = rnt(), m = rnt();
nn.In(n), mm.In(m);
return;
}
inline void Solve () {
BigNum a, b, one;
one.In(1), a.In(2), b.In(1);
a = a * (nn + one) * mm;
for_(i, n + 2, n - m + 4) {
BigNum ii;
ii.In(i);
a = a * ii;
}
b = nn * (nn + one);
for_(i, n + 3, n - m + 4) {
BigNum ii;
ii.In(i);
b = b * ii;
}
ans = a + b;
_for(i, 2, n) {
BigNum ii;
ii.In(i);
ans = ans * ii;
}
return;
}
inline void Out () {
ans.Out();
return;
}
}
Combination
思路
Lucas 定理 \((6)\) 板子题.
Code
点击查看代码
namespace SOLVE {
const ll P = 1e4 + 7, N = 1e4 + 10;
ll T, x, y, fac[N], inv[N];
inline ll rnt () {
ll x = 0, w = 1; char c = getchar();
while (!isdigit(c)) { if (c == '-') w = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * w;
}
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1;
_for (i, 1, P)
fac[i] = fac[i - 1] * i % P;
inv[P - 1] = FastPow(fac[P - 1], P - 2);
for_ (i, P - 2, 0)
inv[i] = inv[i + 1] * (i + 1) % P;
return ;
}
inline ll C (ll n, ll m) {
if (m > n) return 0;
return fac[n] * inv[n - m] % P * inv[m] % P;
}
inline ll Lucas (ll n, ll m) {
if (m == 0) return 1;
return C(n % P, m % P) * Lucas(n / P, m / P) % P;
}
inline void In () {
x = rnt(), y = rnt();
return ;
}
inline void Out () {
printf("%lld\n", Lucas(x, y));
return ;
}
}
[SDOI2016]排列计数
思路
我们钦定 \(m\) 个数为稳定的,方案数为 \(\dbinom{n}{m}\).
在剩下的 \(n-m\) 个位置里要保证每个数不稳定.
欸那不就是错排列 \((3)\) 吗?
那么方案数就是 \(D_{n-m}\).
总方案数就是 \(\dbinom{n}{m}D_{n-m}\),\(\Theta(n)\) 预处理一下错排列,阶乘与逆元可用 \(\Theta(1)\) 求出单次询问.
代码
点击查看代码
namespace SOLVE {
const ll P = 1e9 + 7, N = 1e6 + 10, M = 1e6;
ll T, n, m, d[N], fac[N], inv[N];
inline ll rnt () {
ll x = 0, w = 1; char c = getchar();
while (!isdigit(c)) { if (c == '-') w = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * w;
}
inline ll FastPow(ll a, ll b) {
ll ans = 1;
while (b) {
if(b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
d[0] = 1, d[1] = 0, fac[0] = 1;
_for (i, 2, M) d[i] = (i - 1) * ((d[i - 1] + d[i - 2]) % P) % P;
_for (i, 1, M) fac[i] = fac[i - 1] * i % P;
inv[M] = FastPow(fac[M], P - 2);
for_ (i, M - 1, 0) inv[i] = inv[i + 1] * (i + 1) % P;
return;
}
inline ll C(ll n, ll m) {
return fac[n] * inv[n - m] % P * inv[m] % P;
}
inline void In () {
n = rnt(), m = rnt();
return ;
}
inline void Out () {
printf("%lld\n", C(n, m) * d[n-m] % P);
return ;
}
}
[ZJOI2010]排列计数
思路
观察一下可以发现满足性质的序列是一个小根堆.
那么设 \(s_i\) 表示以 \(i\) 为根的堆的大小,\(f_i\) 表示以 \(i\) 为根的堆的可行方案数(此时该子堆里的序号不是最终序号,而是在子堆内大小的排名,因为归并到父堆时要算分配给子堆不同序号的方案数).
那么转移方程就是:
\[s_{i}=s_{i*2}+s_{i*2+1}+1\\ f_{i}=\dbinom{s_{i}-1}{s_{i*2}}f_{i*2}f_{i*2+1} \](自己必须是最小的所以只能从 \(s_{i}-1\) 个序号选 \(s_{i*2}\) 分配给左儿子,剩下的全给右儿子)
代码
点击查看代码
namespace SOLVE {
const ll N = 4e6 + 10;
ll T, n, P, sz[N], f[N], fac[N];
inline ll rnt () {
ll x = 0, w = 1; char c = getchar();
while (!isdigit(c)) { if (c == '-') w = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * w;
}
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if(b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1;
_for (i, 1, std::min(P, n)) fac[i] = fac[i - 1] * i % P;
_for (i, 1, n * 2 + 1) f[i] = 1;
return;
}
inline ll Inv (ll n) {
return FastPow(fac[n], P - 2);
}
inline ll C (ll n, ll m) {
if(!n || !m) return 1;
return fac[n] * Inv(n - m) % P * Inv(m) % P;
}
inline ll Lucas (ll n, ll m) {
if(!n || !m) return 1;
return C(n % P, m % P) * Lucas(n / P, m / P) % P;
}
inline void In () {
n = rnt(), P = rnt();
return ;
}
inline void Solve () {
for_ (i, n, 1) {
sz[i] = sz[i << 1] + sz[(i << 1) + 1] + 1;
f[i] = f[i << 1] * f[(i << 1) + 1] % P * Lucas(sz[i] - 1, sz[i << 1]) % P;
}
return ;
}
inline void Out () {
printf("%lld\n", f[1]);
return ;
}
}
BZOJ2839 集合计数
思路
谔项式反演.
设 \(f(i)\) 表示交集数量 \(\ge i\) 的方案数,\(g(i)\) 表示交集个数恰好为 \(i\) 个的方案数,那么答案为 \(g(k)\).
那么:
\[f(i)=\dbinom{n}{i}(2^{2^{n-i}}-1) \]即先确定 \(i\) 个必选,包含这 \(i\) 个的集合数为 \(2^{n-k}\) 个,每个集合都可以选或不选但不能一个不选,即 \(2^{2^{n-i}}-1\).
同时:
\[f(k)=\sum_{i=k}^{n}\dbinom{i}{k}g(i) \]等一下这式子是不是在哪里见过?
这不是 \((10)\) 吗?!
那么愉快的套一个谔项式反演:
\[\begin{aligned} g(k) &=\sum_{i=k}^{n}(-1)^{i-k}\dbinom{i}{k}f(i)\\ &=\sum_{i=k}^{n}(-1)^{i-k}\dbinom{i}{k}\dbinom{n}{i}(2^{2^{n-i}}-1)\\ \end{aligned} \]再加上一点预处理,就可以解决了.
代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 1e6 + 10, P = 1e9 + 7;
ll T, n, k, er[N], fac[N], inv[N], ans;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1, er[0] = 2;
_for (i, 1, n) {
fac[i] = fac[i - 1] * i % P;
er[i] = (er[i - 1] * er[i - 1]) % P;
}
inv[n] = FastPow (fac[n], P - 2);
for_ (i, n - 1, 0) inv[i] = inv[i + 1] * (i + 1) % P;
return;
}
inline ll C (ll n, ll m) {
if (!m) return 1;
return fac[n] * inv[n - m] % P * inv[m] % P;
}
inline void In () {
n = rnt (), k = rnt ();
return;
}
inline void Solve () {
_for (i, k, n) {
ll w = ((i - k) & 1) ? -1 : 1;
ans = (ans + (er[n - i] - 1 + P) % P * C (n, i) % P * C (i, k) % P * w + P) % P;
}
return;
}
inline void Out () {
printf ("%lld\n", ans);
return;
}
}
牡牛和牝牛
思路
我们枚举牝牛的数量 \(i\),那么一定会有 \(k\times(i-1)\) 只牡牛被固定住,此时剩下 \(w(i)=(n-i-k\times(i-1))\times[i>0]+n\times[i=0]\) 只牡牛可以随便选位置.
观察一下,看上去是只有 \(k+1\) 个地方可以插空,然而两只牝牛之间可以放多只牡牛,如何解决这个问题?
既然可以重复放,那我们就把重复放的位置 \(\text{new}\) 出来!
即把空的个数改为 \(k+1+(w(i)-1)=k+i\).
这样会不会导致选的全都是 \(\text{new}\) 出来的呢?不会,因为我们只 \(\text{new}\) 出来了 \(w(i)-1\) 个空,剩下的一只牛必然会被放在原有的位置.
那么答案就是:
\[\sum_{i=0}^{n}[w(i)\ge0]\dbinom{i+w(i)}{w(i)} \]代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 1e5 + 10, P = 5e6 + 11;
ll n, k, fac[N], inv[N], ans;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar();
while (!isdigit(c)) { if (c == '-') w = -1; c = getchar();}
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x * w;
}
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1;
_for (i, 1, n) fac[i] = fac[i - 1] * i % P;
inv[n] = FastPow (fac[n], P - 2);
for_ (i, n - 1, 0) inv[i] = inv[i + 1] * (i + 1) % P;
return;
}
inline ll C (ll n, ll m) {
return fac[n] * inv[n - m] % P * inv[m] % P;
}
inline void In () {
n = rnt (), k = rnt ();
return;
}
inline void Solve () {
_for (i, 0, n) {
ll w = i ? (n - i - k * (i - 1)) : n;
if (w < 0) break;
ans = (ans + C (i + w, w)) % P;
}
return ;
}
inline void Out () {
printf ("%lld\n", ans);
return ;
}
}
序列统计
思路
本题和上一题有些类似,每个数也是可以重复选的.
那么设 \(m=r-l+1\),长度为 \(i\) 的序列的方案数为 \(\dbinom{m+i-1}{i}\).
然后推式子:
\[\begin{aligned} \sum_{i=1}^{n}\dbinom{m+i-1}{i} &=\sum_{i=1}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m}{m}-1\\ &=\sum_{i=2}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m}{m-1}+\dbinom{m}{m}-1\\ &=\sum_{i=2}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m+1}{m}-1\\ &=\sum_{i=3}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m+2}{m}-1\\ &=\sum_{i=4}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m+3}{m}-1\\ &=\cdots\\ &=\sum_{i=n}^{n}\dbinom{m+i-1}{m-1}+\dbinom{m+n-1}{m}-1\\ &=\dbinom{m+n}{m}-1\\ \end{aligned} \]但 \(n,m\) 过大,需要用到 \(\text{Lucas}\) 定理 \((6)\).
代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 1e6 + 10, P = 1e6 + 3;
ll T, n, m, l, r, fac[N], inv[N];
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline ll FastPow (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % P;
a = a * a % P, b >>= 1;
}
return ans;
}
inline void Pre () {
fac[0] = 1;
_for (i, 1, P - 1) fac[i] = fac[i - 1] * i % P;
inv[P - 1] = FastPow (fac[P - 1], P - 2);
for_ (i, P - 2, 0) inv[i] = inv[i + 1] * (i + 1) % P;
return;
}
inline ll C (ll n, ll m) {
if (n < m) return 0;
if (!n || !m) return 1;
return fac[n] * inv[n - m] % P * inv[m] % P;
}
inline ll Lucas (ll n, ll m) {
if (n < m) return 0;
if (!n || !m) return 1;
return C (n % P, m % P) * Lucas (n / P, m / P) % P;
}
inline void In () {
n = rnt (), l = rnt (), r = rnt ();
m = r - l + 1;
return;
}
inline void Out () {
printf ("%lld\n", (Lucas (m + n, m) + P - 1) % P);
return;
}
}
[SDOI2009] 虔诚的墓主人
思路
代码
感觉以前写的代码太丑了.
于是又写了一份.
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 1e5 + 10, P = 2147483648;
ll n, m, w, k, C[N][20], ans;
ll cx[N], cy[N], nx[N], ny;
class TREE {
public:
ll x, y;
inline bool operator < (TREE another) {
return (y == another.y) ? (x < another.x) : (y < another.y);
}
} tr[N];
class TreeArray {
public:
ll b[N];
inline ll lowbit (ll x) { return x & -x; }
inline void Update (ll x, ll y) {
while (x <= n) {
b[x] = (b[x] + y) % P;
x += lowbit (x);
}
return;
}
inline ll Query (ll x) {
ll ans = 0;
while (x) {
ans = (ans + b[x]) % P;
x -= lowbit (x);
}
return ans;
}
} ta;
namespace LISAN {
ll ls1[N], ls2[N];
inline void lisan () {
_for (i, 1, w) ls1[i] = tr[i].x;
_for (i, 1, w) ls2[i] = tr[i].y;
std::sort (ls1 + 1, ls1 + w + 1);
std::sort (ls2 + 1, ls2 + w + 1);
n = std::unique (ls1 + 1, ls1 + w + 1) - ls1;
m = std::unique (ls2 + 1, ls2 + w + 1) - ls2;
_for (i, 1, w) {
tr[i].x = std::lower_bound (ls1 + 1, ls1 + n + 1, tr[i].x) - ls1;
tr[i].y = std::lower_bound (ls2 + 1, ls2 + m + 1, tr[i].y) - ls2;
}
return;
}
}
inline void Pre () {
C[0][0] = 1;
_for (i, 1, w) {
C[i][0] = 1;
_for (j, 1, k) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % P;
}
return;
}
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void In () {
n = rnt (), m = rnt (), w = rnt ();
_for (i, 1, w) tr[i].x = rnt (), tr[i].y = rnt ();
k = rnt ();
return;
}
inline void Solve () {
LISAN::lisan ();
std::sort (tr + 1, tr + w + 1);
_for (i, 1, w) ++cx[tr[i].x], ++cy[tr[i].y];
_for (i, 1, w - 1) {
++ny, ++nx[tr[i].x];
ll last = (ta.Query (tr[i].x) - ta.Query (tr[i].x - 1) + P) % P;
if (tr[i].y == tr[i + 1].y) {
ll up_down = C[ny][k] * C[cy[tr[i].y] - ny][k] % P;
ll left_right = (ta.Query (tr[i + 1].x - 1) - ta.Query (tr[i].x) + P) % P;
ans = (ans + up_down * left_right % P) % P;
}
else ny = 0;
ta.Update (tr[i].x, (C [nx[tr[i].x]][k] * C [cx[tr[i].x] - nx[tr[i].x]][k] % P - last + P) % P);
}
return;
}
inline void Out () {
printf ("%lld\n", ans);
return;
}
}
[SDOI2010]地精部落
思路
\(f_{i,0}\) 表示长度为 \(i\) 且第一段山为山谷的序列数量.
\(f_{i,1}\) 表示长度为 \(i\) 且第一段山为山峰的序列数量.
\[f_{i,k}= \sum_{j=1}^{i}[j\bmod{2}=k]\dbinom{i-1}{j-1}f_{j-1,k}f_{i-j,0} \]代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 4200 + 10;
int n, P, f[N][2], C[N][N], ans;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void In () {
n = rnt (), P = rnt ();
return;
}
inline void Solve () {
f[0][0] = f[0][1] = f[1][0] = 1, C[0][0] = 1;
_for (i, 1, n) {
C[i][0] = 1;
_for (j, 1, i) {
f[i][j & 1] = ((ll)(f[i][j & 1]) + (ll)(f[j - 1][j & 1]) * (ll)(f[i - j][0]) % P * C[i - 1][j - 1] % P) % P;
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
return;
}
inline void Out () {
printf ("%lld\n", (f[n][0] + f[n][1]) % P);
return;
}
}
[ZJOI2011]看电影
思路
这个式子还是蛮有意思的,但要用高精.
首先答案 \(=\frac{合法情况数}{总情况数}\),总情况数显然是 \(k^n\),难点在于如何算出合法情况数.
首先我们在 \(k\) 后面新增一个座位 \(k+1\) 然后拉链为环,让没有座位的人从头开始往后坐,这样一定所有人都会有座位,那么这样的环一共会有 \((k+1)^{n-1}\) 个(即圆排列).注意:这里暂时不考虑标号.
但是我们怎么判断做法是否合法呢?如果 \(k+1\) 这个位置最后有人,那么在没有环与新座位时就一定会有人站在这里,否则没人站着(即合法情况),也就是说 我们在环中找到空的位置当成 \(k+1\) 即可,空的位置一共有 \(k+1-n\) 个,所以最后答案为:
\[\frac{(k+1)^{n-1}(k+1-n)}{k^n} \]这就是拉链为环前莫名其妙地新增一个座位 \(k+1\) 的原因.
然后这个题非常恶心,要用高精,化简分数时要用高精除,这里考虑一种简单的方法:
显然 \(k+1\) 与 \(k\) 互质,只能化简 \(\dfrac{k+1-n}{k^n}\).
这里 \(k+1-n\) 为低精,我们提前做一次 \(\gcd\) 把 \(k^n\) 膜 \(k+1-n\) 转换为低精,就可以低精求 \(\gcd\) 了.
也就是说,最后我们只需要高精乘,高精除低精和高精膜低精即可.
代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 110, B = 10000000; // Base
ll T, n, k;
class BigNum {
public:
ll num[N];
inline void Print () {
printf ("%lld", num[num[0]]);
for_ (i, num[0] - 1, 1) printf ("%07lld", num[i]);
return;
}
inline void Clear () {
memset (num, 0, sizeof (num));
num[0] = 1;
return;
}
inline void In (ll number) { num[1] = number; }
BigNum operator * (ll ano) {
BigNum ans;
ans.Clear ();
ans.num[0] = num[0];
_for (i, 1, num[0]) {
ans.num[i] += num[i] * ano;
ans.num[i + 1] += ans.num[i] / B;
ans.num[i] %= B;
}
while (ans.num[ans.num[0] + 1]) ++ans.num[0];
return ans;
}
BigNum operator * (BigNum ano) {
BigNum ans;ans.Clear ();
ans.num[0] = num[0] + ano.num[0] - 1;
_for (i, 1, num[0]) {
_for (j, 1, ano.num[0]) {
ans.num[i + j - 1] += num[i] * ano.num[j];
ans.num[i + j] += ans.num[i + j - 1] / B;
ans.num[i + j - 1] %= B;
}
}
while (ans.num[ans.num[0] + 1]) ++ans.num[0];
return ans;
}
inline BigNum operator / (ll ano) {
BigNum ans (*this);
for_ (i, num[0], 1) {
if (i > 1) ans.num[i - 1] += (ans.num[i] % ano) * B;
ans.num[i] /= ano;
}
while (!ans.num[ans.num[0]] && ans.num[0] > 1) --ans.num[0];
return ans;
}
inline ll operator % (ll ano) {
ll ans = 0;
for_ (i, num[0], 1) {
ans = ans * B % ano;
ans += num[i] % ano;
}
return ans;
}
} a, b;
inline ll Gcd (ll a, ll b) {
if (!b) return a;
return Gcd (b, a % b);
}
inline BigNum FastPow (BigNum a, ll b) {
BigNum ans;ans.Clear ();
ans.num[0] = ans.num[1] = 1;
while (b) {
if (b & 1) ans = ans * a;
a = a * a, b >>= 1;
}
return ans;
}
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void In () {
n = rnt (), k = rnt ();
return;
}
inline void Solve () {
a.Clear (), b.Clear ();
a.num[1] = k + 1, b.num[1] = k;
a = FastPow (a, n - 1) * (k + 1 - n);
b = FastPow (b, n);
ll c = b % (k + 1 - n);
ll g = Gcd (k + 1 - n, c);
a = a / g, b = b / g;
return;
}
inline void Out () {
a.Print (), putchar (' ');
b.Print (), puts ("");
return;
}
}
中国剩余定理
【模板】中国剩余定理(CRT)/ 曹冲养猪
思路
模板题.
代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 20;
ll n, a[N], m[N], M = 1, ans;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void exgcd (ll a, ll b, ll& x, ll& y) {
if (!b) {
x = 1, y = 0;
return;
}
exgcd (b, a % b, x, y);
ll _x = x;
x = y, y = _x - (a / b) * y;
return;
}
inline void In () {
n = rnt ();
_for (i, 1, n) {
m[i] = rnt (), a[i] = rnt ();
M *= m[i];
}
return;
}
inline void Solve () {
_for (i, 1, n) {
ll Mi = M / m[i], inv, y;
exgcd (Mi, m[i], inv, y);
ans = (ans + a[i] * Mi % M * (inv + m[i]) % M) % M;
}
return;
}
inline void Out () {
printf ("%lld\n", ans);
return;
}
}
Strange Way to Express Integers
思路
EXCRT 模板题.
代码
点击查看代码
namespace SOLVE {
typedef long double ldb;
typedef long long ll;
typedef double db;
const ll N = 1e5 + 10;
ll n, a[N], m[N], b, M;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
ll Exgcd (ll a, ll b, ll& x, ll& y) {
if (!b) { x = 1, y = 0; return a; }
ll g = Exgcd (b, a % b, x, y), _x = x;
x = y, y = _x - (a / b) * y;
return g;
}
inline ll Lcm (ll a, ll b) {
return a * b / std::__gcd (a, b);
}
inline ll FastMul (ll a, ll b, ll MOD) {
ll ans = 0;
while (b) {
if (b & 1) ans = (ans + a) % MOD;
a = (a + a) % MOD, b >>= 1;
}
return (ans + MOD) % MOD;
}
inline void In () {
n = rnt ();
_for (i, 1, n) m[i] = rnt (), a[i] = rnt ();
return;
}
inline ll EXCRT () {
b = a[1], M = m[1];
_for (i, 2, n) {
ll x, y, num = (a[i] - b % m[i] + m[i]) % m[i];
ll g = Exgcd (M, m[i], x, y);
if (num % g) return -1;
b += M * FastMul(x, num / g, m[i] / g);
M *= m[i] / g, b = (b % M + M) % M;
}
return (b % M + M) % M;
}
inline void Out () {
printf ("%lld\n", EXCRT());
return;
}
}
礼物
思路
式子显然是:
\[\prod_{i=1}^{m}\dbinom{n-sum_{i-1}}{w_i}\bmod{P} \]直接扩卢即可.
代码
点击查看代码
const ll N = 1e5 + 10, INF = 1ll << 40;
namespace MathBasic {
inline void GetFactor (ll x, std::vector <ll>& f1, std::vector <ll>& f2) {
f1.push_back (0), f2.push_back (0);
_for (i, 2, x) {
if (!(x % i)) {
f1.push_back (i), f2.push_back (0);
while (!(x % i)) ++f2[f2.size () - 1], x /= i;
}
}
return;
}
inline ll FastPow (ll a, ll b, ll Mod = INF) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % Mod;
a = a * a % Mod, b >>= 1;
}
return ans;
}
ll ExGcd (ll a, ll b, ll& x, ll& y) {
if (!b) { x = 1, y = 0; return a; }
ll g = ExGcd (b, a % b, x, y), _x = x;
x = y, y = _x - (a / b) * y;
return g;
}
inline ll Inv (ll a, ll P) {
ll x, y;
ExGcd (a, P, x, y);
return (x % P + P) % P;
}
}
namespace EXLUCAS {
using namespace MathBasic;
inline ll FDP (ll x, ll P, ll pk) {
if (!x) return 1;
ll ans = 1;
_for (i, 1, pk) if (i % P) ans = ans * i % pk;
ans = FastPow (ans, x / pk, pk);
_for (i, 1, x % pk) if (i % P) ans = ans * i % pk;
return ans * FDP (x / P, P, pk) % pk;
}
inline ll Index (ll x, ll P) {
if (x < P) return 0;
return (x / P) + Index (x / P, P);
}
ll a[N], md[N], P;
std::vector <ll> p, k;
inline void Pre (ll _P) {
GetFactor (_P, p, k);
P = _P;
return;
}
inline ll ExLucas (ll n, ll m) {
ll ans = 0, sz = p.size () - 1;
_for (i, 1, sz) {
md[i] = FastPow (p[i], k[i]);
a[i] = FDP (n, p[i], md[i]) * Inv (FDP (m, p[i], md[i]), md[i]) % md[i] * Inv (FDP (n - m, p[i], md[i]), md[i]) % md[i];
a[i] = a[i] * FastPow (p[i], Index (n, p[i]) - Index (m, p[i]) - Index (n - m, p[i]), md[i]) % md[i];
ans = (ans + a[i] * (P / md[i]) % P * Inv (P / md[i], md[i]) % P) % P;
}
return ans;
}
}
namespace SOLVE {
ll P, n, m, w[10], sum[10], ans = 1;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void In () {
P = rnt (), n = rnt (), m = rnt ();
_for (i, 1, m) {
w[i] = rnt ();
sum[i] = sum[i - 1] + w[i];
}
return;
}
inline void Solve () {
EXLUCAS::Pre (P);
_for (i, 1, m) {
if (n - sum[i - 1] < w[i]) { ans = -1; return; }
ans = ans * EXLUCAS::ExLucas (n - sum[i - 1], w[i]) % P;
}
return;
}
inline void Out () {
printf ((ans == -1) ? "Impossible\n" : "%lld\n", ans);
return;
}
}
[SDOI2010]古代猪文
思路
(为啥 SDOI2010 经典题这么多啊,猪国杀和 \(k\) 短路模板也是这里出的)
数论全家桶.
显然式子为:
\[g^{\sum_{n|k}\binom{n}{k}}\bmod{999911659} \]用一个费马小定理:
\[g^{\sum_{n|k}\binom{n}{k}\bmod{999911658}}\bmod{999911659} \]那么现在的问题就是:如何求出 \(\sum_{n|k}\binom{n}{k}\bmod{999911658}\)?
仔细看两眼发现就是个扩卢.
然后就出来了.
(其实 \(999911658\) 就是 \(2, 3, 4679, 35617\) 这几个质数之积,可以简化一点写.)
代码
点击查看代码
const ll N = 50000, INF = 1ll << 40;
namespace MathBasic {
inline ll FastPow (ll a, ll b, ll MOD = INF) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % MOD;
a = a * a % MOD, b >>= 1;
}
return ans;
}
inline ll ExGcd (ll a, ll b, ll& x, ll& y) {
if (!b) { x = 1, y = 0; return a; }
ll g = ExGcd (b, a % b, x, y), _x = x;
x = y, y = _x - y * (a / b);
return g;
}
inline ll Inv (ll a, ll P) {
ll x, y;
ExGcd (a, P, x, y);
return (x % P + P) % P;
}
}
namespace EXLUCAS {
using namespace MathBasic;
ll a[5], p[5] = { 0, 2, 3, 4679, 35617 }, fac[5][N], q[5];
ll FDP (ll x, ll P, ll qwq) {
if (!x) return 1;
ll ans = FastPow (fac[qwq][P - 1], x / P, P);
ans = ans * fac[qwq][x % P] % P;
return ans * FDP (x / P, P, qwq) % P;
}
ll Index (ll x, ll P) {
if (x < P) return 0;
return (x / P) + Index (x / P, P);
}
inline void Pre () {
fac[1][0] = fac[2][0] = fac[3][0] = fac[4][0] = 1;
_for (k, 1, 4) {
_for (i, 1, 36000) fac[k][i] = fac[k][i - 1] * i % p[k];
q[k] = (999911658 / p[k]) * Inv (999911658 / p[k], p[k]);
}
return;
}
inline ll ExLucas (ll n, ll m, ll P) {
ll ans = 0;
_for (i, 1, 4) {
a[i] = FDP (n, p[i], i) * Inv (FDP (m, p[i], i), p[i]) % P * Inv (FDP (n - m, p[i], i), p[i]) % p[i];
a[i] = a[i] * FastPow (p[i], Index (n, p[i]) - Index (m, p[i]) - Index (n - m, p[i])) % p[i];
ans = (ans + a[i] * q[i] % P) % P;
}
return ans;
}
}
namespace SOLVE {
ll n, g, idx, P = 999911659;
inline ll rnt () {
ll x = 0, w = 1; char c = getchar ();
while (!isdigit (c)) { if (c == '-') w = -1; c = getchar (); }
while (isdigit (c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar ();
return x * w;
}
inline void In () {
n = rnt (), g = rnt ();
EXLUCAS::Pre ();
return;
}
inline void Solve () {
for (ll i = 1; i * i <= n; ++i) {
if (n % i) continue;
idx = (idx + EXLUCAS::ExLucas (n, i, P - 1)) % (P - 1);
if (i * i != n) idx = (idx + EXLUCAS::ExLucas (n, n / i, P - 1)) % (P - 1);
}
return;
}
inline void Out () {
printf ("%lld\n", g == P ? 0 : MathBasic::FastPow (g, idx, P));
return;
}
}
Reference
标签:return,dbinom,定理,笔记,计数,num,ans,inline,ll From: https://www.cnblogs.com/Keven-He/p/CombinationAndCRT.html
- 排列组合
——OI-Wiki- 学习笔记-组合数学——组合数基础,组合数取模,CRT
——Rolling_star- 浅谈Lucas定理应用及组合数建模
——BerryKanry- 谔项式反演
——GXZlegend- 中国剩余定理(CRT)的证明
——Pycr- 中国剩余定理
——OI-Wiki- 扩展Lucas定理
——HorizonWind