首页 > 其他分享 >[FJOI2016] 建筑师 题解

[FJOI2016] 建筑师 题解

时间:2025-01-23 09:55:51浏览次数:1  
标签:begin end 建筑师 int 题解 bmatrix FJOI2016 栋楼

显然有一个 \(dp\) 思路。设 \(f_{i,j}\) 表示现在修了 \(i\) 栋楼,从第一栋楼外侧能看到 \(j\) 栋楼的方案数,显然有:

\[f_{i,j}=\begin{cases}[i=0](j=0)\\f_{i-1,j-1}+(i-1)f_{i-1,j}(j\ne 0)\end{cases} \]

一眼 \(f_{i,j}=\begin{bmatrix}i\\j\end{bmatrix}\)。那么答案即为:

\[\sum_{i=0}^{n-1}\begin{bmatrix}i\\A-1\end{bmatrix}\begin{bmatrix}n-i-1\\B-1\end{bmatrix}\binom ni \]

但这样时间复杂度是 \(O(tn)\) 的,并不能 \(AC\)。考虑组合意义。相当于拿出了 \(A+B-2\) 个圆排列,再挑出了其中的 \(A-1\) 个圆排列。这个式子可以表示为:

\[\begin{bmatrix}n-1\\A+B-2\end{bmatrix}\binom{A+B-2}{A-1} \]

时间复杂度 \(O(n(A+B)+t)\)。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=50005,M=105,p=1e9+7;
int t,n,str[N][M*2],C[M*2][M];
signed main(){
    ios::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>t,str[0][0]=1;
    for(int i=1;i<=5e4;i++) for(int j=1;j<=200;j++)
        str[i][j]=(str[i-1][j-1]+str[i-1][j]*(i-1))%p;
    for(int i=0;i<=200;i++){
        C[i][0]=1;
        for(int j=1;j<=min(i,100ll);j++)
            C[i][j]=(C[i-1][j-1]+C[i-1][j])%p;
    }while(t--){
        int n,a,b;cin>>n>>a>>b;
        cout<<str[n-1][a+b-2]*C[a+b-2][a-1]%p<<"\n";
    }return 0;
}

标签:begin,end,建筑师,int,题解,bmatrix,FJOI2016,栋楼
From: https://www.cnblogs.com/chang-an-22-lyh/p/18687138/fjoi2016-jian_zhu_shi-tj

相关文章

  • [BZOJ5093] 图的价值 题解
    考虑计算一个点的贡献,最后\(\timesn\)即为所求。显然一个点的贡献为\(\sum\limits_{i=0}^{n-1}\binom{n-1}ii^k2^{\frac{(n-1)(n-2)}2}\),则有:\[\sum_{i=0}^{n-1}\binom{n-1}ii^k2^{\frac{(n-1)(n-2)}2}=2^{\frac{(n-1)(n-2)}2}\sum_{i=0}^{n-1}\sum_{j=0}^k\begin{Bmatrix}k......
  • [TJOI/HEOI2016] 求和 题解
    为什么又是佳媛姐姐啊啊啊!斯特林数在这道题中不好处理,直接拆开:\[f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\j\end{Bmatrix}2^jj!\]\[=\sum_{j=0}^n2^jj!\sum_{i=0}^n\sum_{k=0}^j\frac{(-1)^k(j-k)^i}{k!(j-k)!}\]\[=\sum_{j=0}^n2^jj!\sum_{k=0}^j\frac{(-1)^k\sum\l......
  • [联合省选 2020A] 组合数问题 题解
    后面有一只大大的组合数,考虑下降幂干过去。\(x^k\)并不好使,这边考虑转化\(f(x)=\suma_ix^i=\sumb_ix^\underlinei\)。\[\sum_{k=0}^nf(k)x^k\binomnk=\sum_{k=0}^nx^k\sum_{i=0}^mb_ik^\underlinei\binomnk\]\[=\sum_{k=0}^nx^k\sum_{i=0}^mb_in^\underlinei\binom{n-i......
  • Bear and Bad Powers of 42 题解
    题目描述定义一个正整数是坏的,当且仅当它是\(42\)的幂次,否则它是好的。给定长为\(n\)的序列\(a_i\),保证初始所有数都是好的。接下来\(q\)次操作:1i:查询\(a_i\)。2lrx:将\(a_l,\cdots,a_r\)赋值为一个好的数\(x\)。3lrx:将\(a_l,\cdots,a_r\)加上\(......
  • [ARC178C] Sum of Abs 2 题解
    首先想到能不能用差分搞搞,但是给自己绕进去了/kel我们不妨给\(\{b_L\}\)定个不降的序(如果打在数轴上,显然序和答案无关),于是可以拿掉绝对值。注意到这个和式(记其结果为\(x\))中每个\(b_i\)的贡献系数\(c_i=2i-L-1\),于是有:\[x=\sum_{i=1}^{L}b_ic_i\]直接做不......
  • CF2061G Kevin and Teams 题解
    题目描述这是一道交互题。\(T\)组数据,一张\(n\)个点的无向完全图,边权\(\in\{0,1\}\),边权未知。你需要先输出最大的\(k\),满足无论每条边的边权是什么,都能找出\(2k\)个不同的点\(\{u_1,\cdots,u_n,v_1,\cdots,v_n\}\),使得边\((u_i,v_i)\)的权值同时为\(0\)或同时......
  • Codeforces Round 998 (Div. 3)(部分题解)
    补题链接A. Fibonacciness思路:了解清楚题意,求得是最大的斐波那契的度,数组只有5个数(最多度为3),能列出其对应的式子 或 或#include<bits/stdc++.h>usingnamespacestd;#defineintlonglongvoidsolve(){intn,m,k;vector<int>a(4);set<int>s;......
  • 题解:洛谷 P1803 凌乱的yyy / 线段覆盖
    题目https://www.luogu.com.cn/problem/P1803题目大意给定  条线段,第  条线段放在位置 ,现在你需要从这些线段中拿出一些,使得剩下的线段不会重叠。思路考虑贪心。可以发现,按照左端点从小到大排序毫无意义(虽然样例能过)。因此考虑按右端点从小到大排序。然后尽量多放......
  • AtCoder ABC326C 题解
    题目链接问题陈述Takahashi在数字线上放置了\(N\)个礼物。第\(i\)个礼物放置在坐标\(A_i\)处。您将在数轴上选择长度为\(M\)的半开区间\([x,x+M)\),并获得其中包含的所有礼物。更具体地说,你根据以下程序获得礼物。首先,选择一个实数\(x\)。然后,获取坐标满足\(......
  • C. Game of Mathletes(题解)
    首先Alice擦一个数a,然后Bob再擦一个数b,只有当a+b=k的时候才可以得分,Alice想要最小化分数而Bob想要最大化分数,所以如果给定的数中存在两个数的和为k,那么当Alice擦掉其中一个的时候Bob一定会擦掉另一个来得分,而且题目给定的数组长度为偶数,所以我们只需要运用双指针的思想找到数组......