首页 > 其他分享 >多模态大模型InterVL2.5使用记录

多模态大模型InterVL2.5使用记录

时间:2025-01-14 18:10:10浏览次数:1  
标签:模态 模型 question pixel num history InterVL2.5 image size

本文记录在本地安装和测试InterVL2.5(26B版本)

论文:https://arxiv.org/abs/2412.05271

Huggingface模型权重下载页:https://huggingface.co/collections/OpenGVLab/internvl25-673e1019b66e2218f68d7c1c

Github: https://github.com/OpenGVLab/InternVL

本地硬件:RTX3090

1. 创建环境并安装相关依赖

# 创建虚拟环境
conda create -n intervl python=3.10 -y
conda activate intervl

# 安装基础依赖
modelscope/transformers torch等

2. 下载模型:https://github.com/OpenGVLab/InternVL

这里选择视觉编码器大小为6B,语言模型为20B,共26B大小的模型。

ModelScope提供了两种方式下载,1)下载到./cache/modelscope/hub里;2)下载到本地。
这里我们选择下载原始模型文件到本地

# 1)下载完整模型repo
modelscope download --model OpenGVLab/InternVL2_5-26B

# 2)下载完整文件到本地
modelscope download --model OpenGVLab/InternVL2_5-26B --local_dir /path/to/save/InternVL2_5-26B

然后就是漫长的等待下载过程(huggingface上下载可能需要换源)

from transformers import AutoModel, AutoTokenizer # 或者 from modelscope import AutoModel, AutoTokenizer 

path = 'OpenGVLab/InternVL2_5-26B' # 如果是本地则path = '/path/to/save/InternVL2_5-26B'
model = AutoModel.from_pretrained(
    path, 
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

3. 使用官方例子体验InternVL2_5

模型量化和多GPU可选:https://huggingface.co/OpenGVLab/InternVL2_5-1B-MPO#quick-start

点击查看代码
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer # 或者 from modelscope import AutoModel, AutoTokenizer 

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
# Otherwise, you need to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2_5-26B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}\nAssistant: {response}')

# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list

video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

标签:模态,模型,question,pixel,num,history,InterVL2.5,image,size
From: https://www.cnblogs.com/eewpan/p/18671231

相关文章

  • python与WRF模型联合应用技术、WRF模式前后处理
    当今从事气象及其周边相关领域的人员,常会涉及气象数值模式及其数据处理,无论是作为业务预报的手段、还是作为科研工具,掌握气象数值模式与高效前后处理语言是一件非常重要的技能。WRF作为中尺度气象数值模式的佼佼者,模式功能齐全,是大部分人的第一选择。而掌握模式还只是第一步,将......
  • 【实战指南】零基础到精通AI大模型:附带详细学习路线与实践技巧,助你快速入门并精通!
    作为零基础小白学习AI大模型,可以遵循以下步骤:基础知识学习:数学基础:学习线性代数、概率论、统计学、微积分等,这些是理解AI模型的数学原理的基础。编程基础:至少掌握一门编程语言,如Python,这是实现AI算法的工具。了解AI基本概念:学习机器学习、深度学习的基本概念,了解不同的......
  • AI - 大模型核心参数解析(Top-k、Top-p、Temperature、frequency penalty、presence pe
    原文链接https://blog.csdn.net/u012856866/article/details/140308083 文章目录0.前言1.top-k采样2.top-p采样3.Temperature采样4.联合采样(top-k&top-p&Temperature)4.frequencypenalty和presencepenalty5.参数调整技巧参考资料在大模型推理过程中,常常能看到......
  • AI大模型学习路径:适合每个人的详细步骤与技巧!
    23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的学习路线就变得非常重要!由于AI大模型应用技术比较新,业界也没什么参照标准,打造AI大模型技术的学习路线并非......
  • AI - 大模型里的token,具体指什么?
    在大语言模型中,**token**是一个比单个字母或单个汉字更复杂的概念。它通常是指输入文本被模型处理时的一个基本单位,这个单位可以是一个单词、一个子词(subword)、一个字符,甚至是一个特殊的标记(如换行符、标点符号等)。具体来说,token的划分方式取决于模型使用的分词器(tokenizer)。###......
  • 7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
    人工智能生成图像(AI生图)的领域中,StableDiffusionWebUI以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而ComfyUI则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI的灵活性和直观性使得......
  • 让 LLM 来评判 | 选择 LLM 评估模型
    基础概念这是让LLM来评判系列文章的第一篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示什么是评估模型?评估模型(Judgemodels)是一种用于评估其他神经网络的神经网络。大多数情况下它们用......
  • 【MATLAB代码】CV和CA模型组成的IMM(滤波方式为UKF),可复制粘贴源代码
    该代码实现了一维无迹卡尔曼滤波器(UKF)与交互式多模型(IMM)结合的状态估计。代码分为多个部分,主要功能包括参数定义、观测数据生成、状态估计、模型更新以及结果可视化。文章目录运行结果程序代码主要功能代码结构应用场景注意事项运行结果程序代码下方......
  • 用于决策的世界模型 -- 论文 World Models (2018) & PlaNet (2019) 讲解
    参考资料:[2411.14499]UnderstandingWorldorPredictingFuture?AComprehensiveSurveyofWorldModels[1803.10122]WorldModelsLearningLatentDynamicsforPlanningfromPixelsKaixhin/PlaNet:DeepPlanningNetwork:Controlfrompixelsbylatentplanning......
  • 知识图谱与大模型融合,重新定义设备故障诊断
    在现代工业与制造领域,设备运行的稳定性和可靠性对生产效率和安全至关重要。然而,随着设备的复杂性日益提升,传统的故障诊断方法面临以下挑战:1.复杂的故障模式:设备的多部件、多工况、多故障模式使传统方法难以全面覆盖。2.数据爆炸与不均:海量的传感器数据与日志记录需要高效处......