大型语言模型带给我们的激动人心的一种可能性是,我们可以通过它构建定制的聊天机器人 (Chatbot),而且只需很少的工作量。在这一章节的探索中,我们将带你了解如何利用会话形式,与具 有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。
像 ChatGPT 这样的聊天模型实际上是组装成以一系列消息作为输入,并返回一个模型生成的消息作为输 出的。这种聊天格式原本的设计目标是简便多轮对话,但我们通过之前的学习可以知道,它对于不会涉 及任何对话的单轮任务也同样有用。
给定身份
在 ChatGPT 网页界面中,您的消息称为用户消息,而 ChatGPT 的消息称为助手消息。但在构建聊天机 器人时,在发送了系统消息之后,您的角色可以仅作为用户 (user) ;也可以在用户和助手 (assistant) 之 间交替,从而提供对话上下文。
定义对话函数
def get_completion_v2(prompt, model="gpt-3.5-turbo"):
openai.api_key = "sk-xxx"
openai.base_url = "https:xxxx"
messages = [{"role": "user", "content": prompt}]
response = openai.chat.completions.create(
model=model,
messages=messages,
temperature=0, # 控制模型输出的随机程度
)
return response.choices[0].message.content
def get_completion_temperature_v2(messages, model="gpt-3.5-turbo", temperature=0):
openai.api_key = "sk-xxxx"
openai.base_url = "https://axxxx"
response = openai.chat.completions.create(
model=model,
messages=messages,
temperature=temperature, # 控制模型输出的随机程度
)
#print(str(response.choices[0].message))
return response.choices[0].message.content
讲笑话
# 中文
messages = [
{'role':'system', 'content':'你是一个像莎士比亚一样说话的助手。'},
{'role':'user', 'content':'给我讲个笑话'},
{'role':'assistant', 'content':'鸡为什么过马路'},
{'role':'user', 'content':'我不知道'} ]
response = get_completion_temperature_v2(messages, temperature=1)
print(response)
友好的聊天机器人
# 中文
messages = [
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'Hi, 我是Isa。'} ]
response = get_completion_temperature_v2(messages, temperature=1)
print(response)
构建上下文
# 中文
messages = [
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'好,你能提醒我,我的名字是什么吗?'} ]
response = get_completion_temperature_v2(messages, temperature=1)
print(response)
# 中文
messages = [
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'Hi, 我是Isa'},
{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},
{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'} ]
response = get_completion_temperature_v2(messages, temperature=1)
print(response)
订餐机器人
构建机器人
def collect_messages(_):
prompt = inp.value_input
inp.value = ''
context.append({'role':'user', 'content':f"{prompt}"})
response = get_completion_temperature_v2(context)
context.append({'role':'assistant', 'content':f"{response}"})
panels.append(
pn.Row('User:', pn.pane.Markdown(prompt, width=600)))
panels.append(
pn.Row('Assistant:', pn.pane.Markdown(response, width=600)))
return pn.Column(*panels)
!pip install panel
# 中文
import panel as pn # GUI
pn.extension()
panels = [] # collect display
context = [{'role':'system', 'content':"""
菜单包括:
你是订餐机器人,为披萨餐厅自动收集订单信息。
你要首先问候顾客。然后等待用户回复收集订单信息。收集完信息需确认顾客是否还需要添加其他内容。
最后需要询问是否自取或外送,如果是外送,你要询问地址。
最后告诉顾客订单总金额,并送上祝福。
请确保明确所有选项、附加项和尺寸,以便从菜单中识别出该项唯一的内容。
你的回应应该以简短、非常随意和友好的风格呈现。
菜品:
意式辣香肠披萨(大、中、小) 12.95、10.00、7.00
芝士披萨(大、中、小) 10.95、9.25、6.50
茄子披萨(大、中、小) 11.95、9.75、6.75
薯条(大、小) 4.50、3.50
希腊沙拉 7.25
配料:
奶酪 2.00
蘑菇 1.50
香肠 3.00
加拿大熏肉 3.50
AI酱 1.50
辣椒 1.00
饮料:
可乐(大、中、小) 3.00、2.00、1.00
雪碧(大、中、小) 3.00、2.00、1.00
瓶装水 5.00
"""} ] # accumulate messages
inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…')
button_conversation = pn.widgets.Button(name="Chat!")
interactive_conversation = pn.bind(collect_messages, button_conversation)
dashboard = pn.Column(
inp,
pn.Row(button_conversation),
pn.panel(interactive_conversation, loading_indicator=True, height=300),
)
Dashboard
初始效果
创建json摘要
messages = context.copy()
messages.append(
{'role':'system', 'content':
'''创建上一个食品订单的 json 摘要。\
逐项列出每件商品的价格,字段应该是 1) 披萨,包括大小 2) 配料列表 3) 饮料列表,包括大小 4) 配菜
列表包括大小 5) 总价
你应该给我返回一个可解析的Json对象,包括上述字段'''},
)
response = get_completion_temperature_v2(messages, temperature=0)
print(response)
标签:10,temperature,机器人,messages,content,role,LLM,pn,response From: https://blog.csdn.net/u010479989/article/details/145000428