首页 > 其他分享 >弹性波动力学笔记(六) 应力张量简介中

弹性波动力学笔记(六) 应力张量简介中

时间:2025-01-02 12:29:47浏览次数:1  
标签:tau int 简介 equation 张量 波动力学 3.4 tag rho

3.4 The Equation Of Motion and Symmetry of the Stress Tensor

Here we will combine several results from the previous sections into the so-called equation, which constitutes one of the most important results of this chapter. we will see that this equation leads to the elastic wave equation and in this section it will be used to prove that the stress tensor \(\tau_{ij}\) is symmetric. From equation (3.2.3) and (3.3.6) and Gauss' theorem for tensors we find

\[\int_{S}n_j\tau_{ji}d{S}+\int_{V}\rho f_i d{V}=\int_{V}(\tau_{ji,j}+\rho f_i)d{V}=\int_{V}{\rho\frac{D{v_i}}{D{t}}}d{V} \tag{3.4.1} \]

where \(\tau_{ji,j}\) is the divergence of \(\tau_{ji}\) , which is a vector. A good discussion of \(\tau_{ji,j}\) and its expression in cylindrical and spherical is provided by Auld(1990).

The last equality in (3.4.1) can be written as

\[ \int_{V}(\tau_{ji,j}+\rho f_i-\rho\frac{D{v_i}}{D{t}})dV=0 \tag{3.4.2} \]

Since (3.4.2) is valid for any arbitrary volume V inside the body, and continuity of the integrand is assumed, we obtain

\[ \tau_{ji,j}+\rho f_i=\rho\frac{Dv_i}{Dt} \tag{3.4.3} \]

The proof that equation(3.4.3) follows equation (3.4.2) is by contradiction. If the integrand were different from zero. Equation (3.4.3) is known as Euler's equation of motion. In dyadic form (3.4.3) becomes

\[\nabla \cdot{T}+\rho\mathbf{f}=\rho\frac{D{\mathbf{v}}}{D{t}} \tag{3.4.4} \]

The symmetry of the stress tensor will be proved using the principle of angular momentum, which should be written as follows when body forces are present:

\[\frac{d}{dt}\int_V(\mathbf{r}\times\rho\mathbf{v})dV=\int_{S}\mathbf{r}\times\mathbf{T}d{S}+\int_{V}(\mathbf{r}\times\rho\mathbf{f})d{V} \tag{3.4.5} \]

Writing in component form, collecting terms in one side, introducing \(\tau_{ij}\) , and using Gauss' theorem and

\[\frac{d}{d{t}}\int_V\rho\phi d{V}=\int_{V}\rho\frac{D{\phi}}{D{t}}d{V} \tag{3.4.6} \]

where \(\phi\) is any scalar, vector, or tensor property we obtain

\[\begin{equation} \begin{aligned} 0 &=\int_V\epsilon_{ijk}\Bigg\{ (x_j\tau_{rk})_{,r}+\rho x_jf_k-\frac{D}{Dt}(x_jv_k)\Bigg\}dV \\ &=\int_V\epsilon_{ijk}\Bigg\{ (\tau_{jk}+x_j\tau_{rk,r})+\rho x_{j}f_{k}-\rho v_k v_j-\rho x_j \frac{Dv_k}{Dt} \Bigg\}d{V} \end{aligned} \tag{3.4.7} \end{equation} \]

where the relation \(x_{j,r}=\delta_{jr}\) was used. Now using equation (3.4.3) and symmetry of \(v_jv_k\), equation (3.4.7) becomes

\[ \int_V\epsilon_{ijk}\tau_{jk}dV=0 \tag{3.4.8} \]

Because the integration volume is arbitrary, if the integrand in equation (3.4.8) is continuous it must be equal to zero:

\[ \epsilon_{ijk}\tau_{jk}=0, \tag{3.4.9} \]

which means that \(\tau_{jk}\) is symmetric,

\[\tau_{jk}=\tau_{kj} \tag{3.4.10} \]

Equation (3.4.10) can be used to rewrite (3.3.14) as

\[ T_j(\mathbf{n})=\tau_{ji}n_i \space j=1,2,3, \tag{3.4.11} \]

so that the matrix equation (3.3.15) becomes

\[\left( {\begin{array}{*{20}{c}} {{T_1}}&\\{{T_2}}&\\{{T_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{\tau _{11}}}&{{\tau _{12}}}&{{\tau _{13}}}\\ {{\tau _{21}}}&{{\tau _{22}}}&{{\tau _{23}}}\\ {{\tau _{31}}}&{{\tau _{32}}}&{{\tau _{33}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{n_1}}&\\{{n_2}}&\\{{n_3}} \end{array}} \right) \tag{3.4.12} \]

Equation (3.4.12) can also be written in dyadic form:

\[ \mathbf{T}=T\cdot{\mathbf{n}} \tag{3.4.13} \]

标签:tau,int,简介,equation,张量,波动力学,3.4,tag,rho
From: https://www.cnblogs.com/GeophysicsWorker/p/18647399

相关文章

  • 1.GPU简介及英伟达开发环境配置
    前言Thisbookshowshow,byharnessingthepowerofyourcomputer’sgraphicsprocessunit(GPU),youcanwritehigh-performancesoftwareforawiderangeofapplications.Althoughoriginallydesignedtorendercomputergraphicsonamonitor(andstillus......
  • 深度学习基础理论————分布式训练(模型并行/数据并行/流水线并行/张量并行)
    主要介绍Pytorch分布式训练代码以及原理以及一些简易的Demo代码模型并行是指将一个模型的不同部分(如层或子模块)分配到不同的设备上运行。它通常用于非常大的模型,这些模型无法完整地放入单个设备的内存中。在模型并行中,数据会顺序通过各个层,即一层处理完所有数据之后再传递给下一......
  • 一、VxLAN 简介
    1.VxLAN和数据中心1.1数据中心的理想属性•移动性•分段性•规模性•自动化与可编程性•大带宽+高度冗余•二、三层连通•物理+虚拟传统的4094个VLAN已经无法满足数据中心云计算和虚拟机迁移的要求,VxLAN通过其24位的VNI标识符,可支持2^24......
  • 【THM】Tor(Tor网络使用简介)-学习
    本文相关的TryHackMe实验房间链接:https://tryhackme.com/r/room/torforbeginners本文相关内容:面向初学者的Tor网络使用指南。Tor介绍Tor是一款免费的开源软件,可用于实现匿名通信。Tor通过一个免费的全球志愿者覆盖网络引导互联网流量,该网络由7000多个中继(转发)器组成,向任何......
  • 1、【RabbitMQ官方教程】简介
    简介RabbitMQ是一个开源的消息代理软件(也被称为消息队列),它实现了高级消息队列协议(AMQP)。本教程旨在帮助开发者通过RabbitMQ创建消息应用的基础知识。教程分为两部分:RabbitMQ队列和RabbitMQ流 RabbitMQ队列这部分教程涵盖了默认的RabbitMQ协议AMQP0-9-1。包括以下......
  • 大学微积分 AB 第六单元-4:变革的整合与积累(微分方程简介、可分离方程简介)
    微积分的关系微积分的基本定理将微分与积分联系起来,表明在某种意义上,微分和积分是互为反操作的。具体而言:若你首先对一个函数进行积分(求其原函数),然后对这个原函数进行微分,那么你会得到最初的函数。反之亦然,若你对一个函数进行微分然后进行积分,你将得到相同的结果(加上常数项)。......
  • Flutter OS外接纹理适配简介-相机预览
    FlutterOHOS外接纹理适配简介Flutter在OHOS平台使用外接纹理,视频播放和相机预览使用方法是一致的,在注册纹理时,flutterengine返回surfaceId。图片场景,则是以PixelMap的形式注册到flutterengine。注:1.一般而言,为了方便复用,会将ohos对接flutter外接纹理的功能代码作为一个modul......
  • C语言结构体简介:“结”在一起,“构”成一“体”
    一、什么是结构体如果要一下子记录很多条数据,咱们一般都会想到用数组,比如记录一个班的学生的成绩。但是数组有个限制:元素必须是同一数据类型。如果我们想同时记录一个人的姓名(字符串)、年龄(整型)、身高(浮点型)等信息时,数组就派不上用场了,这时候就要用到结构体。结构体(struct)内......
  • EBS_GL 简介
    分类帐表用于存储币种、日历和科目表信息的主表包括:•FND_CURRENCIES•GL_PERIOD_SETS•GL_PERIODS•GL_PERIOD_STATUSES•GL_PERIOD_TYPE•FND_ID_FLEX_STRUCTURES•GL_LEDGERS•GL_CODE_COMBINATIONSFND_CURRENCIES和FND_ID_FLEX_STRUCTURES属于应用产品......
  • 高级神经网络API——Keras 简介和一般工作流程
    概述Keras是一个高级神经网络API,它用Python语言编写,能够在TensorFlow、Theano或者CNTK等深度学习框架之上运行。它的设计理念是简单、快速地构建和实验深度学习模型。Keras提供了易于使用的接口,使得用户可以专注于模型架构的设计和训练,而不必深入了解底层复杂的计算......