首页 > 其他分享 >1.GPU简介及英伟达开发环境配置

1.GPU简介及英伟达开发环境配置

时间:2025-01-01 23:26:58浏览次数:8  
标签:伟达 及英 general will CUDA graphics GPU purpose

前言

This book shows how, by harnessing the power of your computer’s graphics process unit (GPU), you can write high-performance software for a wide rangeof applications.Although originally designed to render computer graphics ona monitor (and still used for this purpose), GPUs are increasingly being calledupon for equally demanding programs in science, engineering, and finance,among other domains.We refer collectively to GPU programs that address problems in nongraphics domains as general-purpose. Happily, although you need to have some experience working in C or C++ to benefit from this book,you need not have any knowledge of computer graphics. None whatsoever! GPU programming simply offers you an opportunity to build-and to build mightily-on your existing programming skills.
To program NVlDlA GPUs to perform general-purpose computing tasks, you will want to know what CUDA is. NVlDlA GPUs are built on what’s known as the CUDA Architecture. You can think of the CUDA Architecture as the scheme by which NVlDlA has built GPUs that can perform both traditional graphics-rendering tasks and general-purpose tasks. To program CUDA GPUs, we will be using a language known as CUDA C. As you will see very early in this book.
CUDA C is essentially C with a handful of extensions to allow programming of massively parallel machines like NVIDIA GPUs.
We’ve geared CUDA by Example toward experienced C or C++ programmers who have enough familiarity with C such that they are comfortable reading and writing code in C. This book builds on your experience with C and intends to serve as an example-driven, “quick-start" guide to using NVIDlA’s CUDA C program-
ming language. By no means do you need to have done large-scale software architecture, to have written a C compiler or an operating system kernel, or to know all the ins and outs of the ANSlC standards. However, we do not spend time reviewing C syntax or common C library routines such as malloc() or memcpy ( ) , so we will assume that you are already reasonably familiar with these topics.
You will encounter some techniques that can be considered general parallel programming paradigms, although this book does not aim to teach general parallel programming techniques. Also, while we will look at nearly every part of the CUDA APl, this book does not serve as an extensive APl reference nor will it go into gory detail about every tool that you can use to help develop your CUDA C software. Consequently, we highly recommend that this book be used in conjunction with NVlDlA’s freely available documentation, in particular the NVIDIA CUDA Programming Guide and the NVIDlA CUDA Best Practices Guide. But don’t stress out about collecting all these documents because we’ll walk you through every-thing you need to do.
Without further ado, the world of programming NVlDlA GPUs with CUDA C awaits!

emmmm,这是这本书的前言,大家应该能看明白吧,我看网上推荐这本书,去网上搜了一下就下单了,然后收到发现是一本原版的,也挺好,可以收藏

标签:伟达,及英,general,will,CUDA,graphics,GPU,purpose
From: https://blog.csdn.net/suy123/article/details/144870496

相关文章

  • 利用CUDA编程实现在GPU中对图像的极坐标变换加速
    问题来源:1.需要对输入图像中的一个环形区域,进行极坐标逆变换,将该环形区域转换为一张新的矩形图像2.opencv没有直接对环形区域图像进行变换的函数,需要通过循环遍历的方式,利用polarToCart进行转换3.循环遍历不可避免的带来速度上的问题,尤其是图片较大时解决思路1:使用open......
  • GPU编程最佳语言
    GPU编程最佳语言‌GPU编程的最佳语言选择取决于具体的应用场景和开发者的需求。以下是几种常用的GPU编程语言及其优缺点‌:‌CUDA‌:‌优点‌:CUDA是NVIDIA推出的并行计算平台和编程模型,基于C++,提供了丰富的库和工具,适用于需要直接访问GPU硬件的高性能计算任务。CUDA具有较低的......
  • 必要性论证:将FPGA深入应用于基于CPU、CPU+GPU的人形机器人控制系统
    目录:0前言1需求侧的基本事实1.1实用化的人形机器人的控制系统必须实现感算控一体1.2感算控环路必须具备强实时性(低延迟量+低延迟抖动量)1.3感知环节必须以高帧率+高分辨率、在多个位置+多个方向并行采集人形机器人本体、环境、任务对象的多种信息1.4强实时性的感算......
  • 高性能计算-GPU编程模型(21)
    1.GPU的内存模型GPU编程数据需要从CPU主存拷贝到GPU全局存储器,所有线程共享全局存储。开辟的全局存储器空间指针在CPU代码中不能解引用使用,应在计算完结果后再拷贝回CPU主存空间。线程块内共享存储。(1)线程私有的存储有寄存器、本地内存(2)线程块内有块内线程共享的共享内......
  • 英伟达:Agentic AI通过四步自主解决复杂问题
    英伟达的GPU产品(如A100、H100)目前仍占据数据中心AI工作负载的主导市场份额,覆盖了90%以上的大规模AI计算。相比竞争对手,英伟达的产品在计算效率、能效比和生态支持方面均有显著优势。最近,AgenticAI在业界和学术界都非常火爆,并被普遍认为是AI应用的爆发方向。那么作为AI基础设......
  • 欧拉系统安装GPU驱动
    安装NVIDIADriver进入英伟达官网下载页面按照以上方式选择即可得到>535.113.01版本的驱动,可以实现多卡推理,小于这个版本会导致多卡训练以及推理报错虽然最新版本为550.54.15,但是535版本更加稳定,并且pytorch目前只支持到12.1,而在CUDAToolkit选择栏中没有这个版本,所以选择12.2......
  • 英伟达最新提出ComfyGen,利用大模型自动生成Comfyui工作流,Comfyui再无难度
    StableDiffusion大家都知道,但是想玩好SD,并且玩出花样,那Comfyui肯定得会用。Comfyui相对于去年已经越来越成熟,五花八门的工作流有着五花八门的功能。越来越成熟的背后,却是越来越多的节点,乱糟糟的看着就头疼。要不说英伟达服务好呢,生产芯片也不忘了给用芯片的人提供一些有趣......
  • GPU gdm /etc/X11/xorg.conf
    【本文适用环境:Redhat或CentOS】前提:nvidia-smi能正常读取GPU卡信息关闭gdm[root@host~]#systemctlstopgdm查询系统下是否存在/etc/X11/xorg.conf文件,如果不存在则执行下述步骤生成配置文件[root@host~]#nvidia-xconfig--query-gpu-infoNumberofGPUs:1GP......
  • 绕过CPU:英伟达与IBM致力推动GPU直连SSD以大幅提升性能
    绕过CPU:英伟达与IBM致力推动GPU直连SSD以大幅提升性能|Id|Title|DateAdded|SourceUrl|PostType|Body|BlogId|Description|DateUpdated|IsMarkdown|EntryName|CreatedTime|IsActive|AutoDesc|AccessPermission||-------------|-------------|---......
  • python网络编程之http longpull
    服务端:fromflaskimportFlask,request,jsonifyimporttimeapp=Flask(__name__)@app.route('/stream',methods=['GET'])defpoll():#假设这里有一个方法来检查是否有新数据#为了示例,我们简单地模拟等待数据time.sleep(5)#模拟处理时间或等待......