首页 > 其他分享 >摘录

摘录

时间:2024-12-19 17:20:13浏览次数:7  
标签:Compositional UT States Learning PDF Zappos 摘录

Awesome-Compositional-Zero-Shot

Papers and codes about Compositional Zero Shot Learning(CZSL) for computer vision are present on this page. Besides, the commonly-used datasets for CZSL are also introduced.

Papers

2024

Title Venue Dataset PDF CODE 可用性
Imaginary-Connected Embedding in Complex Space for Unseen Attribute-Object Discrimination TPAMI 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 无代码
Disentangling Before Composing: Learning Invariant Disentangled Features for Compositional Zero-Shot Learning TPAMI 2024 UT-Zappos & C-GQA & AO-CLEVr PDF CODE 效果差
Simple Primitives With Feasibility- and Contextuality-Dependence for Open-World Compositional Zero-Shot Learning TPAMI 2024 MIT-States & UT-Zappos & C-GQA PDF -
C2C: Component-to-Composition Learning for Zero-Shot Compositional Action Recognition ECCV 2024 C-GQA & Sth-com PDF CODE 与视频有关?
Prompting Language-Informed Distribution for Compositional Zero-Shot Learning ECCV 2024 MIT-States & C-GQA & VAW-CZSL PDF CODE 创新点是使用了大模型,难以基于此改进?
MRSP: Learn Multi-representations of Single Primitive for Compositional Zero-Shot Learning ECCV 2024 MIT-States UT-Zappos & Clothing16K PDF -
Understanding Multi-compositional learning in Vision and Language models via Category Theory ECCV 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 无代码
Beyond Seen Primitive Concepts for Attributes-Objects Compositional Learning CVPR 2024 MIT-States & C-GQA & VAW-CZSL PDF -
Context-based and Diversity-driven Specificity in Compositional Zero-Shot Learning CVPR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning CVPR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Retrieval-Augmented Primitive Representations for Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
ProCC: Progressive Cross-primitive Compatibility for Open-World Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 指标奇怪?
Revealing the Proximate Long-Tail Distribution in Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
A Dynamic Learning Method towards Realistic Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
Continual Compositional Zero-Shot Learning IJCAI 2024 UT-Zappos & C-GQA PDF -
CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot Learning ICASSP 2024 MIT-States & C-GQA PDF CODE 无代码
Learning Conditional Prompt for Compositional Zero-Shot Learning ICME 2024 MIT-States & UT-Zappos & C-GQA PDF -
PMGNet: Disentanglement and entanglement benefit mutually for compositional zero-shot learning CVIU 2024 UT-Zappos & C-GQA & VAW-CZSL PDF -
LVAR-CZSL: Learning Visual Attributes Representation for Compositional Zero-Shot Learning TCSVT 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 可参考
Agree to Disagree: Exploring Partial Semantic Consistency against Visual Deviation for Compositional Zero-Shot Learning TCDS 2024 MIT-States & UT-Zappos & C-GQA PDF -
Compositional Zero-Shot Learning using Multi-Branch Graph Convolution and Cross-layer Knowledge Sharing PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Visual primitives as words: Alignment and interaction for compositional zero-shot learning PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Mutual Balancing in State-Object Components for Compositional Zero-Shot Learning PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
GIPCOL: Graph-Injected Soft Prompting for Compositional Zero-ShotLearning WACV 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 代码不可用
CAILA: Concept-Aware Intra-Layer Adapters for Compositional Zero-Shot Learning WACV 2024 MIT-States & UT-Zappos & C-GQA PDF -

2023

Title Venue Dataset PDF CODE
Distilled Reverse Attention Network for Open-world Compositional Zero-Shot Learning ICCV 2023 MIT-States & UT-Zappos & C-GQA PDF -
Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning ICCV 2023 MIT-States & C-GQA &VAW-CZSL PDF CODE
Do Vision-Language Pretrained Models Learn Composable Primitive Concepts? TMLR 2023 MIT-States PDF CODE
Reference-Limited Compositional Zero-Shot Learning ICMR 2023 RL-CZSL-ATTR & RL-CZSL-ACT PDF CODE
Learning Conditional Attributes for Compositional Zero-Shot Learning CVPR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Learning Attention as Disentangler for Compositional Zero-shot Learning CVPR 2023 Clothing16K & UT-Zappos & C-GQA PDF CODE
Decomposed Soft Prompt Guided Fusion Enhancing for Compositional Zero-Shot Learning CVPR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning ICLR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Compositional Zero-Shot Artistic Font Synthesis IJCAI 2023 SSAF & Fonts PDF CODE
Hierarchical Prompt Learning for Compositional Zero-Shot Recognition IJCAI 2023 MIT-States & UT-Zappos & C-GQA PDF -
Leveraging Sub-Class Discrimination for Compositional Zero-shot Learning AAAI 2023 UT-Zappos & C-GQA PDF CODE
Dual-Stream Contrastive Learning for Compositional Zero-Shot Recognition TMM 2023 MIT-States & UT-Zappos PDF -
Isolating Features of Object and Its State for Compositional Zero-Shot Learning TETCI 2023 MIT-States & UT-Zappos & C-GQA PDF -
Learning Attention Propagation for Compositional Zero-Shot Learning WACV 2023 MIT-States & UT-Zappos & C-GQA PDF -

2022

Title Venue Dataset PDF CODE
A Decomposable Causal View of Compositional Zero-Shot Learning TMM 2022 MIT-States & UT-Zappos PDF CODE
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning CVPR 2022 MIT-States & UT-Zappos & C-GQA PDF CODE
Disentangling Visual Embeddings for Attributes and Objects CVPR 2022 MIT-States & UT-Zappos & VAW-CZSL PDF CODE
Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning CVPR 2022 MIT-States & UT-Zappos & C-GQA PDF CODE
On Leveraging Variational Graph Embeddings for Open World Compositional Zero-Shot Learning ACM MM 2022 MIT-States & UT-Zappos & C-GQA PDF -
3D Compositional Zero-shot Learning with DeCompositional Consensus ECCV 2022 C-PartNet PDF CODE
Learning Invariant Visual Representations for Compositional Zero-Shot Learning ECCV 2022 UT-Zappos & AO-CLEVr & Clothing16K PDF CODE
Learning Graph Embeddings for Open World Compositional Zero-Shot Learning TPAMI 2022 MIT-States & UT-Zappos & C-GQA PDF -
Bi-Modal Compositional Network for Feature Disentanglement ICIP 2022 MIT-States & UT-Zappos PDF -

2021

Title Venue Dataset PDF CODE
Learning Graph Embeddings for Compositional Zero-Shot Learning CVPR 2021 MIT-States & UT-Zappos & C-GQA PDF CODE
Open World Compositional Zero-Shot Learning CVPR 2021 MIT-States & UT-Zappos PDF CODE
Independent Prototype Propagation for Zero-Shot Compositionality NeurIPS 2021 AO-Clevr & UT-Zappos PDF CODE
Revisiting Visual Product for Compositional Zero-Shot Learning NeurIPS 2021 MIT-States & UT-Zappos & C-GQA PDF -
Learning Single/Multi-Attribute of Object with Symmetry and Group TPAMI 2021 MIT-States & UT-Zappos PDF CODE
Relation-aware Compositional Zero-shot Learning for Attribute-Object Pair Recognition TMM 2021 MIT-States & UT-Zappos PDF CODE
A Contrastive Learning Approach for Compositional Zero-Shot Learning ICMI 2021 MIT-States & UT-Zappos & Fashion200k PDF -

2020

Title Venue Dataset PDF CODE
Symmetry and Group in Attribute-Object Compositions CVPR 2020 MIT-States & UT-Zappos PDF CODE
Learning Unseen Concepts via Hierarchical Decomposition and Composition CVPR 2020 MIT-States & UT-Zappos PDF -
A causal view of compositional zero-shot recognition NeurIPS 2020 UT-Zappos & AO-Clevr PDF CODE
Compositional Zero-Shot Learning via Fine-Grained Dense Feature Composition NeurIPS 2020 DFashion & AWA2 & CUB & SUN PDF CODE

2019

Title Venue Dataset PDF CODE
Adversarial Fine-Grained Composition Learning for Unseen Attribute-Object Recognition ICCV 2019 MIT-States & UT-Zappos PDF -
Task-Driven Modular Networks for Zero-Shot Compositional Learning ICCV 2019 MIT-States & UT-Zappos PDF CODE
Recognizing Unseen Attribute-Object Pair with Generative Model AAAI 2019 MIT-States & UT-Zappos PDF -

2018

Title Venue Dataset PDF CODE
Attributes as Operators: Factorizing Unseen Attribute-Object Compositions CVPR 2018 MIT-States & UT-Zappos PDF CODE

2017

Title Venue Dataset PDF CODE
From Red Wine to Red Tomato: Composition with Context CVPR 2017 MIT-States & UT-Zappos PDF CODE

Datasets

Most CZSL papers usually conduct experiments on MIT-States and UT-Zappos datasets. However, as CZSL receives more attention, some new datasets are proposed and used in recent papers, such as C-GQA, AO-CLEVr, etc.

MIT-States

Introduced by Isola et al. in Discovering States and Transformations in Image Collections.

The MIT-States dataset has 245 object classes, 115 attribute classes and ∼53K images. There is a wide range of objects (e.g., fish, persimmon, room) and attributes (e.g., mossy, deflated, dirty). On average, each object instance is modified by one of the 9 attributes it affords.

Source:http://web.mit.edu/phillipi/Public/states_and_transformations/index.html

UT-Zappos

Introduced by Yu et al. in Fine-Grained Visual Comparisons with Local Learning.

UT Zappos50K (UT-Zap50K) is a large shoe dataset consisting of 50,025 catalog images collected from Zappos.com. The images are divided into 4 major categories — shoes, sandals, slippers, and boots — followed by functional types and individual brands. The shoes are centered on a white background and pictured in the same orientation for convenient analysis.

Source:https://vision.cs.utexas.edu/projects/finegrained/utzap50k/

C-GQA

Introduced by Naeem et al. in Learning Graph Embeddings for Compositional Zero-shot Learning.

Compositional GQA (C-GQA) dataset is curated from the recent Stanford GQA dataset originally proposed for VQA. C-GQA includes 413 attribute classes and 674 object classes, contains over 9.5k compositional labels with diverse compositional classes and clean annotations, making it the most extensive dataset for CZSL.

Source:https://github.com/ExplainableML/czsl

AO-CLEVr

Introduced by Atzmon et al. in A causal view of compositional zero-shot recognition.

AO-CLEVr is a new synthetic-images dataset containing images of "easy" Attribute-Object categories, based on the CLEVr. AO-CLEVr has attribute-object pairs created from 8 attributes: { red, purple, yellow, blue, green, cyan, gray, brown } and 3 object shapes {sphere, cube, cylinder}, yielding 24 attribute-object pairs. Each pair consists of 7500 images. Each image has a single object that consists of the attribute-object pair. The object is randomly assigned one of two sizes (small/large), one of two materials (rubber/metallic), a random position, and random lightning according to CLEVr defaults.

Source:https://github.com/nv-research-israel/causal_comp

VAW-CZSL

Introduced by Nirat Saini et al. in Disentangling Visual Embeddings for Attributes and Objects.

VAW-CZSL, a subset of VAW, which is a multilabel attribute-object dataset. Sample one attribute per image, leading to much larger dataset in comparison to previous datasets. The images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets.

Source:https://github.com/nirat1606/OADis.

Compositional PartNet

Introduced by Naeem et al. in 3D Compositional Zero-shot Learning with DeCompositional Consensus.

Compositional PartNet (C-PartNet) is refined from PartNet with a new labeling scheme that relates the compositional knowledge between objects by merging and renaming the repeated labels. The relabelled C-PartNet consists of 96 parts compared to 128 distinct part labels in the original PartNet.

Source:https://github.com/ferjad/3DCZSL

Results

Experimental results of some methods on the two most commonly-used datasets(MIT-States, UT-Zappos) and the most challenging dataset(C-GQA) are collected and presented.

All the results are obtained under the setting of Closed World Generalized Compositional Zero-Shot Learning. The current optimal metrics are in bold.

MIT-States

Method Seen Unseen HM AUC
DECA 32.2 27.4 20.3 6.6
OADis 31.1 25.6 18.9 5.9
SCEN 29.9 25.2 18.4 5.3
CVGAE 28.5 25.5 18.2 5.3
Co-CGE 31.1 5.8 6.4 1.1
CGE 32.8 28.0 21.4 6.5
BMP-Net 32.9 19.3 16.5 4.3
CompCos 25.3 24.6 16.4 4.5
SymNet(CVPR) 24.4 25.2 16.1 3.0
SymNet(TPAMI) 26.2 26.3 16.8 4.5
HiDC - 15.4 15.0 -
AdvFineGrained - 13.5 14.0 -
TMN 20.2 20.1 13.0 2.9
GenModel 24.8 13.4 11.2 2.3
AttrAsOp 14.3 17.4 9.9 1.6
RedWine 20.7 17.9 11.6 2.4

UT-Zappos

Method Seen Unseen HM AUC
DECA 64.0 68.8 51.7 37.0
IVR(fixed) 56.9 65.5 46.2 30.6
OADis 59.5 65.5 44.4 30.0
SCEN 63.5 63.1 47.8 32.0
CVGAE 65.0 62.4 49.8 34.6
ProtoProp 62.1 65.5 50.2 34.7
Co-CGE 62.0 44.3 40.3 23.1
CGE 64.5 71.5 60.5 33.5
BMP-Net 83.9 60.9 56.9 44.7
CompCos 59.8 62.5 43.1 28.7
SymNet(TPAMI) 10.3 56.3 24.1 26.8
HiDC - 53.4 52.4 -
CAUSAL 39.7 26.6 31.8 23.3
AdvFineGrained - 48.5 50.7 -
TMN 58.7 60.0 45.0 29.3
AttrAsOp 59.8 54.2 40.8 25.9
RedWine 57.3 62.3 41.0 27.1

C-GQA

Method Seen Unseen HM AUC
SCEN 28.9 25.4 17.5 5.5
CVGAE 28.2 11.9 13.9 2.8
Co-CGE 32.1 2.0 3.4 0.78
CGE 31.4 14.0 14.5 3.6

Acknowledgements

This page is made by Yanyi Zhang and Jianghao Li, both of whom are graduate students of Dalian University of Technology.

标签:Compositional,UT,States,Learning,PDF,Zappos,摘录
From: https://www.cnblogs.com/seekwhale13/p/18617604

相关文章

  • rebuttal 摘录(3)
    link:https://www.iikx.com/news/article/8915.html小过原创心得:如果分数低,就当锻炼自己rebuttal的能力了;你想,分数低你还能回复那么多(至少你自己觉得挺有道理的),那么以后遇到分数高的,不是手到擒来吗?哈哈哈哈https://www.cnblogs.com/marsggbo/p/14278583.html......
  • rebuttal摘录
    link:https://zhuanlan.zhihu.com/p/602024489link:https://blog.csdn.net/qq_41895003/article/details/135050957......
  • rebuttal 摘录
    link:https://mp.weixin.qq.com/s/m_cYjUZuzKYAAm3bOA8Srg常用句式以下列举一些rebuttal中的常用句式,供大家选择使用:开头Thankyouforyoursuggestion.Thankyouforthepositive/detailed/constructivecomments.WesincerelythankallreviewersandACsfor......
  • 水、墨-----现代书法沉思录摘录
    水、墨-----现代书法沉思录摘录雷家林   现代的美在于朦胧不确定的神秘。西方的现代艺术反理性,追求神秘是为了达到内省,对内在的自然心灵结构的真实,亦即一种超自然超逻辑,生生不息生命流动的真实,而水墨在雪白的宣帛上构成的艺术幻想,正是这种艺术心理同构。在水墨一般的现......
  • 《道德经》摘录
    道可道,非常道。名可名,非常名。挫其锐,解其纷,和其光,同其尘。天地不仁,以万物为刍狗,圣人不仁,以百姓为刍狗。大道废,有仁义。见素抱朴,少私寡欲,绝学无忧。众人昭昭,我独昏昏。众人察察,我独闷闷。不自见,故明;不自是,故彰;不自伐,故有功;不自矜,故长。重为轻根,静为躁君。天下神器,不可为也,......
  • 博客摘录「 MD5原理」2024年8月3日
    ,MD5消息摘要算法(英语:MD5Message-DigestAlgorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16个字符(BYTES))的散列值(hashvalue),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(RonaldLinnRivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在......
  • 博客摘录「 2024年 Java 面试八股文(20w字)」2024年7月2日
    反射机制:Reflection(反射) 是Java语言被视为动态语言的关键,反射机制允许程序在执行期借助于ReflectionAPI取得任何类的内部信息,并能直接操作对象的内部属性以及方法。加载完类之后,在堆内存的方法区中就产生了一个Class类型的对象(一个类只有一个Class对象), 这个对象包含......
  • 《人月神话》摘录
    软件开发更像是写文章,规模增大带来的是效率的降低。将一篇文章切割成多个组成部分,分给不同的人去撰写,最后合并成一篇如同出自一人的文章是极具挑战性的关于协作产品负责人作为总指挥,技术主管充当其左右手。这种方法有一些困难。很难在技术主管不参与任何管理工作的同时,建立在......
  • 【摘录】人形机器人和自动驾驶技术 —— 3D机器视觉技术
    以下内容引自:https://www.eda365.com/forum.php?mod=viewthread&tid=7442883D机器视觉技术分为两个部分,即3D重构技术和3D数据分析算法,前者获取3D信息、重构3D场景,后者对3D场景中的信息进行理解。目前,3D重构的常用技术类型有:被动3D视觉技术(分为单目3D、双目3D和多目3D,即分别......
  • 博客摘录「 linux应急响应」2024年3月12日
    ------***windoes***------方法宸极实验室—『杂项』一篇Windows应急响应的详细笔记-九州信泰的文章-知乎宸极实验室—『杂项』一篇Windows应急响应的详细笔记-知乎利用win+r后输入lusrmgr.msc查询系统是否存在多余的特权、隐藏账户。或者打开控制面板>用户账户......