首页 > 其他分享 >【数值特性库】入口文件

【数值特性库】入口文件

时间:2024-12-19 10:59:44浏览次数:6  
标签:pub radix 入口 特性 assert 数值 str eq fn

入口文件lib.rs:

//!为泛型准备的数字特征库 

#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![no_std]

// 需要显式地将crate引入固有的float方法。Need to explicitly bring the crate in for inherent float methods
#[cfg(feature = "std")]
extern crate std;

use core::fmt;
use core::num::Wrapping;
use core::ops::{Add, Div, Mul, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};

pub use crate::bounds::Bounded; // 1 边界特性
#[cfg(any(feature = "std", feature = "libm"))]
pub use crate::float::Float; // 2
pub use crate::float::FloatConst; // 3

pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive}; // 4
pub use crate::identities::{one, zero, ConstOne, ConstZero, One, Zero}; // 5
pub use crate::int::PrimInt; // 6
pub use crate::ops::bytes::{FromBytes, ToBytes}; // 7
pub use crate::ops::checked::{
    CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
};               // 8
pub use crate::ops::euclid::{CheckedEuclid, Euclid}; // 9
pub use crate::ops::inv::Inv; // 10
pub use crate::ops::mul_add::{MulAdd, MulAddAssign}; // 11
pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub}; // 12
pub use crate::ops::wrapping::{
    WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
};                           // 13
pub use crate::pow::{checked_pow, pow, Pow};  // 14
pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned};  // 15

#[macro_use]
mod macros;

pub mod bounds;
pub mod cast;
pub mod float;
pub mod identities;
pub mod int;
pub mod ops;
pub mod pow;
pub mod real;
pub mod sign;

/// The base trait for numeric types, covering `0` and `1` values,
/// comparisons, basic numeric operations, and string conversion.
pub trait Num: PartialEq + Zero + One + NumOps {
    type FromStrRadixErr;

    /// Convert from a string and radix (typically `2..=36`).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use num_traits::Num;
    ///
    /// let result = <i32 as Num>::from_str_radix("27", 10);
    /// assert_eq!(result, Ok(27));
    ///
    /// let result = <i32 as Num>::from_str_radix("foo", 10);
    /// assert!(result.is_err());
    /// ```
    ///
    /// # Supported radices
    ///
    /// The exact range of supported radices is at the discretion of each type implementation. For
    /// primitive integers, this is implemented by the inherent `from_str_radix` methods in the
    /// standard library, which **panic** if the radix is not in the range from 2 to 36. The
    /// implementation in this crate for primitive floats is similar.
    ///
    /// For third-party types, it is suggested that implementations should follow suit and at least
    /// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix.
    /// It's possible that a type might not even support the common radix 10, nor any, if string
    /// parsing doesn't make sense for that type.
    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}

/// Generic trait for types implementing basic numeric operations
///
/// This is automatically implemented for types which implement the operators.
pub trait NumOps<Rhs = Self, Output = Self>:
    Add<Rhs, Output = Output>
    + Sub<Rhs, Output = Output>
    + Mul<Rhs, Output = Output>
    + Div<Rhs, Output = Output>
    + Rem<Rhs, Output = Output>
{
}

impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
    T: Add<Rhs, Output = Output>
        + Sub<Rhs, Output = Output>
        + Mul<Rhs, Output = Output>
        + Div<Rhs, Output = Output>
        + Rem<Rhs, Output = Output>
{
}

/// The trait for `Num` types which also implement numeric operations taking
/// the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}

/// The trait for `Num` references which implement numeric operations, taking the
/// second operand either by value or by reference.
///
/// This is automatically implemented for all types which implement the operators. It covers
/// every type implementing the operations though, regardless of it being a reference or
/// related to `Num`.
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}

/// Generic trait for types implementing numeric assignment operators (like `+=`).
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignOps<Rhs = Self>:
    AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}

impl<T, Rhs> NumAssignOps<Rhs> for T where
    T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}

/// The trait for `Num` types which also implement assignment operators.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}

/// The trait for `NumAssign` types which also implement assignment operations
/// taking the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}

macro_rules! int_trait_impl {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {
            type FromStrRadixErr = ::core::num::ParseIntError;
            #[inline]
            fn from_str_radix(s: &str, radix: u32)
                              -> Result<Self, ::core::num::ParseIntError>
            {
                <$t>::from_str_radix(s, radix)
            }
        }
    )*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 u128);
int_trait_impl!(Num for isize i8 i16 i32 i64 i128);

impl<T: Num> Num for Wrapping<T>
where
    Wrapping<T>: NumOps,
{
    type FromStrRadixErr = T::FromStrRadixErr;
    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        T::from_str_radix(str, radix).map(Wrapping)
    }
}

#[derive(Debug)]
pub enum FloatErrorKind {
    Empty,
    Invalid,
}
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
    pub kind: FloatErrorKind,
}

impl fmt::Display for ParseFloatError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let description = match self.kind {
            FloatErrorKind::Empty => "cannot parse float from empty string",
            FloatErrorKind::Invalid => "invalid float literal",
        };

        description.fmt(f)
    }
}

fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool {
    a.len() == b.len()
        && a.bytes().zip(b.bytes()).all(|(a, b)| {
            let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5);
            a_to_ascii_lower == b
        })
}

// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
    ($name:ident for $($t:ident)*) => ($(
        impl $name for $t {
            type FromStrRadixErr = ParseFloatError;

            fn from_str_radix(src: &str, radix: u32)
                              -> Result<Self, Self::FromStrRadixErr>
            {
                use self::FloatErrorKind::*;
                use self::ParseFloatError as PFE;

                // Special case radix 10 to use more accurate standard library implementation
                if radix == 10 {
                    return src.parse().map_err(|_| PFE {
                        kind: if src.is_empty() { Empty } else { Invalid },
                    });
                }

                // Special values
                if str_to_ascii_lower_eq_str(src, "inf")
                    || str_to_ascii_lower_eq_str(src, "infinity")
                {
                    return Ok(core::$t::INFINITY);
                } else if str_to_ascii_lower_eq_str(src, "-inf")
                    || str_to_ascii_lower_eq_str(src, "-infinity")
                {
                    return Ok(core::$t::NEG_INFINITY);
                } else if str_to_ascii_lower_eq_str(src, "nan") {
                    return Ok(core::$t::NAN);
                } else if str_to_ascii_lower_eq_str(src, "-nan") {
                    return Ok(-core::$t::NAN);
                }

                fn slice_shift_char(src: &str) -> Option<(char, &str)> {
                    let mut chars = src.chars();
                    Some((chars.next()?, chars.as_str()))
                }

                let (is_positive, src) =  match slice_shift_char(src) {
                    None             => return Err(PFE { kind: Empty }),
                    Some(('-', ""))  => return Err(PFE { kind: Empty }),
                    Some(('-', src)) => (false, src),
                    Some((_, _))     => (true,  src),
                };

                // The significand to accumulate
                let mut sig = if is_positive { 0.0 } else { -0.0 };
                // Necessary to detect overflow
                let mut prev_sig = sig;
                let mut cs = src.chars().enumerate();
                // Exponent prefix and exponent index offset
                let mut exp_info = None::<(char, usize)>;

                // Parse the integer part of the significand
                for (i, c) in cs.by_ref() {
                    match c.to_digit(radix) {
                        Some(digit) => {
                            // shift significand one digit left
                            sig *= radix as $t;

                            // add/subtract current digit depending on sign
                            if is_positive {
                                sig += (digit as isize) as $t;
                            } else {
                                sig -= (digit as isize) as $t;
                            }

                            // Detect overflow by comparing to last value, except
                            // if we've not seen any non-zero digits.
                            if prev_sig != 0.0 {
                                if is_positive && sig <= prev_sig
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && sig >= prev_sig
                                    { return Ok(core::$t::NEG_INFINITY); }

                                // Detect overflow by reversing the shift-and-add process
                                if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
                                    { return Ok(core::$t::NEG_INFINITY); }
                            }
                            prev_sig = sig;
                        },
                        None => match c {
                            'e' | 'E' | 'p' | 'P' => {
                                exp_info = Some((c, i + 1));
                                break;  // start of exponent
                            },
                            '.' => {
                                break;  // start of fractional part
                            },
                            _ => {
                                return Err(PFE { kind: Invalid });
                            },
                        },
                    }
                }

                // If we are not yet at the exponent parse the fractional
                // part of the significand
                if exp_info.is_none() {
                    let mut power = 1.0;
                    for (i, c) in cs.by_ref() {
                        match c.to_digit(radix) {
                            Some(digit) => {
                                // Decrease power one order of magnitude
                                power /= radix as $t;
                                // add/subtract current digit depending on sign
                                sig = if is_positive {
                                    sig + (digit as $t) * power
                                } else {
                                    sig - (digit as $t) * power
                                };
                                // Detect overflow by comparing to last value
                                if is_positive && sig < prev_sig
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && sig > prev_sig
                                    { return Ok(core::$t::NEG_INFINITY); }
                                prev_sig = sig;
                            },
                            None => match c {
                                'e' | 'E' | 'p' | 'P' => {
                                    exp_info = Some((c, i + 1));
                                    break; // start of exponent
                                },
                                _ => {
                                    return Err(PFE { kind: Invalid });
                                },
                            },
                        }
                    }
                }

                // Parse and calculate the exponent
                let exp = match exp_info {
                    Some((c, offset)) => {
                        let base = match c {
                            'E' | 'e' if radix == 10 => 10.0,
                            'P' | 'p' if radix == 16 => 2.0,
                            _ => return Err(PFE { kind: Invalid }),
                        };

                        // Parse the exponent as decimal integer
                        let src = &src[offset..];
                        let (is_positive, exp) = match slice_shift_char(src) {
                            Some(('-', src)) => (false, src.parse::<usize>()),
                            Some(('+', src)) => (true,  src.parse::<usize>()),
                            Some((_, _))     => (true,  src.parse::<usize>()),
                            None             => return Err(PFE { kind: Invalid }),
                        };

                        #[cfg(feature = "std")]
                        fn pow(base: $t, exp: usize) -> $t {
                            Float::powi(base, exp as i32)
                        }
                        // otherwise uses the generic `pow` from the root

                        match (is_positive, exp) {
                            (true,  Ok(exp)) => pow(base, exp),
                            (false, Ok(exp)) => 1.0 / pow(base, exp),
                            (_, Err(_))      => return Err(PFE { kind: Invalid }),
                        }
                    },
                    None => 1.0, // no exponent
                };

                Ok(sig * exp)
            }
        }
    )*)
}
float_trait_impl!(Num for f32 f64);

/// A value bounded by a minimum and a maximum
///
///  If input is less than min then this returns min.
///  If input is greater than max then this returns max.
///  Otherwise this returns input.
///
/// **Panics** in debug mode if `!(min <= max)`.
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
    debug_assert!(min <= max, "min must be less than or equal to max");
    if input < min {
        min
    } else if input > max {
        max
    } else {
        input
    }
}

/// A value bounded by a minimum value
///
///  If input is less than min then this returns min.
///  Otherwise this returns input.
///  `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
#[inline]
#[allow(clippy::eq_op)]
pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
    debug_assert!(min == min, "min must not be NAN");
    if input < min {
        min
    } else {
        input
    }
}

/// A value bounded by a maximum value
///
///  If input is greater than max then this returns max.
///  Otherwise this returns input.
///  `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
#[inline]
#[allow(clippy::eq_op)]
pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
    debug_assert!(max == max, "max must not be NAN");
    if input > max {
        max
    } else {
        input
    }
}

#[test]
fn clamp_test() {
    // Int test
    assert_eq!(1, clamp(1, -1, 2));
    assert_eq!(-1, clamp(-2, -1, 2));
    assert_eq!(2, clamp(3, -1, 2));
    assert_eq!(1, clamp_min(1, -1));
    assert_eq!(-1, clamp_min(-2, -1));
    assert_eq!(-1, clamp_max(1, -1));
    assert_eq!(-2, clamp_max(-2, -1));

    // Float test
    assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
    assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
    assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
    assert_eq!(1.0, clamp_min(1.0, -1.0));
    assert_eq!(-1.0, clamp_min(-2.0, -1.0));
    assert_eq!(-1.0, clamp_max(1.0, -1.0));
    assert_eq!(-2.0, clamp_max(-2.0, -1.0));
    assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
    assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
    assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
}

#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min() {
    clamp(0., ::core::f32::NAN, 1.);
}

#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_max() {
    clamp(0., -1., ::core::f32::NAN);
}

#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min_max() {
    clamp(0., ::core::f32::NAN, ::core::f32::NAN);
}

#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_min_nan_min() {
    clamp_min(0., ::core::f32::NAN);
}

#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_max_nan_max() {
    clamp_max(0., ::core::f32::NAN);
}

#[test]
fn from_str_radix_unwrap() {
    // The Result error must impl Debug to allow unwrap()

    let i: i32 = Num::from_str_radix("0", 10).unwrap();
    assert_eq!(i, 0);

    let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
    assert_eq!(f, 0.0);
}

#[test]
fn from_str_radix_multi_byte_fail() {
    // Ensure parsing doesn't panic, even on invalid sign characters
    assert!(f32::from_str_radix("™0.2", 10).is_err());

    // Even when parsing the exponent sign
    assert!(f32::from_str_radix("0.2E™1", 10).is_err());
}

#[test]
fn from_str_radix_ignore_case() {
    assert_eq!(
        f32::from_str_radix("InF", 16).unwrap(),
        ::core::f32::INFINITY
    );
    assert_eq!(
        f32::from_str_radix("InfinitY", 16).unwrap(),
        ::core::f32::INFINITY
    );
    assert_eq!(
        f32::from_str_radix("-InF", 8).unwrap(),
        ::core::f32::NEG_INFINITY
    );
    assert_eq!(
        f32::from_str_radix("-InfinitY", 8).unwrap(),
        ::core::f32::NEG_INFINITY
    );
    assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan());
    assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan());
}

#[test]
fn wrapping_is_num() {
    fn require_num<T: Num>(_: &T) {}
    require_num(&Wrapping(42_u32));
    require_num(&Wrapping(-42));
}

#[test]
fn wrapping_from_str_radix() {
    macro_rules! test_wrapping_from_str_radix {
        ($($t:ty)+) => {
            $(
                for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
                    let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
                    assert_eq!(w, <$t as Num>::from_str_radix(s, r));
                }
            )+
        };
    }

    test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}

#[test]
fn check_num_ops() {
    fn compute<T: Num + Copy>(x: T, y: T) -> T {
        x * y / y % y + y - y
    }
    assert_eq!(compute(1, 2), 1)
}

#[test]
fn check_numref_ops() {
    fn compute<T: NumRef>(x: T, y: &T) -> T {
        x * y / y % y + y - y
    }
    assert_eq!(compute(1, &2), 1)
}

#[test]
fn check_refnum_ops() {
    fn compute<T: Copy>(x: &T, y: T) -> T
    where
        for<'a> &'a T: RefNum<T>,
    {
        &(&(&(&(x * y) / y) % y) + y) - y
    }
    assert_eq!(compute(&1, 2), 1)
}

#[test]
fn check_refref_ops() {
    fn compute<T>(x: &T, y: &T) -> T
    where
        for<'a> &'a T: RefNum<T>,
    {
        &(&(&(&(x * y) / y) % y) + y) - y
    }
    assert_eq!(compute(&1, &2), 1)
}

#[test]
fn check_numassign_ops() {
    fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
        x *= y;
        x /= y;
        x %= y;
        x += y;
        x -= y;
        x
    }
    assert_eq!(compute(1, 2), 1)
}

#[test]
fn check_numassignref_ops() {
    fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T {
        x *= y;
        x /= y;
        x %= y;
        x += y;
        x -= y;
        x
    }
    assert_eq!(compute(1, &2), 1)
}

标签:pub,radix,入口,特性,assert,数值,str,eq,fn
From: https://blog.csdn.net/weixin_43219667/article/details/144580013

相关文章

  • 在H5中,你了解到的ios系统有哪些专用特性?
    在H5前端开发中,针对iOS系统,有一些专用特性值得关注。以下是我了解到的iOS系统专用特性:高性能硬件和操作系统优化:iOS设备通常配备高端硬件和优化的操作系统,这使得在iOS平台上的H5应用能够运行得更加流畅。开发者可以利用这一特性,为用户提供更加顺畅的网页浏览体验。WebKit框架:iO......
  • 只谈C++11新特性 - Range-based for 循环
    Range-basedfor循环引言C++11引入了一种更加简洁和直观的方式来遍历容器中的元素:基于范围的for循环(Range-basedfor循环)。这种语法不仅简化了代码,还提高了代码的可读性和维护性。本文将详细介绍Range-basedfor循环的用法,并结合代码示例进行说明。Range-based......
  • 只谈C++11新特性 - auto
    autoC++11应用auto关键字,不再需要明确指定类型,而是由编译器根据设定值来自动推断对应的类型。下面我们将详细解释auto的使用,并通过代码例子来展示。1.auto的基本使用C++11中的auto可以自动推断变量的类型:#include<iostream>#include<vector>intmain()......
  • 14伪元素-CSS的继承和层叠-元素特性
    一、之前剩下的东西上节讲解了CSS常见的选择器:通用选择器,元素选择器,类选择器,id选择器,属性选择器,组合选择器,伪类选择器之前讲到伪类选择器非常多,但是使用的却不多,上次主要讲到动态伪类,其中:hover最重要。1、伪元素pseudo-elements常用的伪元素是::first-line::first-line:fir......
  • Docker高级特性与性能优化
    一、Docker资源管理1.1为什么需要资源管理?在大型系统中,多个容器共享主机的CPU、内存、I/O等资源。如果不加以限制,部分容器可能会占用过多资源,导致其他服务性能下降。Docker提供了灵活的参数配置来限制CPU、内存、磁盘的使用,保障各个容器的资源公平分配。1.2限制CPU资......
  • 举例说明css中负值有哪些好玩的特性
    在CSS中,负值可以带来很多有趣的效果和特性。以下是一些使用负值在前端开发中创建有趣效果的例子:负边距(NegativeMargin):负边距在布局中可以发挥巨大的作用。例如,你可以使用负边距来重叠元素,或者调整元素之间的间距。.element{margin-top:-20px;}这会使元素向上移动2......
  • Android 13 相较于 Android 12 的新特性
    标签:Android13;Android13新特性;Android13相较于Android12的新特性及开发者注意事项一、Android13相较于Android12的新特性Android13(代号Tiramisu)在用户体验、安全性、隐私保护以及开发者工具等多个方面进行了改进和增强。以下是一些主要的新特......
  • 大数据新视界 -- Hive 事务与 ACID 特性的实现(2 - 16 - 7)
           ......
  • 滑动变阻器的主要特性和参数有哪些?
    滑动变阻器是一种常见的电阻调节装置,其主要特性和参数如下:电阻值范围:滑动变阻器的电阻值范围是指其最小电阻值到最大电阻值之间的范围。这个范围通常由滑动变阻器的设计决定,一般在几欧姆到几千欧姆之间。额定功率:滑动变阻器的额定功率是指其能够承受的最大电功率。如果超过这个......
  • C++特性
    1.自动匹配类型(auto)和decltype(查询类型)auto_a=6;std::cout<<typeid(decltype(_a)).name()<<std:send1;步骤拆分:1.auto根据初始化的数值6,自动推导类型为int2.decltype根据a推导出类型为int结果:int2.范围for//范围for使用std::vector<int>vector;for(auto......