首页 > 其他分享 >Branch Predictor Simulator

Branch Predictor Simulator

时间:2024-11-20 20:46:05浏览次数:1  
标签:file Branch trace Simulator simulator Predictor branch predictor

Branch Predictor Simulator

Overview

The Branch Predictor Simulator is a Python-based simulation tool to evaluate the performance of differentbranch prediction algorithms. This document will guide you through the steps needed to run the simulator,generate branch traces, and understand how to implement each branch predictor. This simulator helps to gaininsights into branch prediction mechanisms used in modern computer architecture, suitable for educationalpurposes.Running the SimulatorThe process of running the simulator involves the following steps:

Generating the Branch Trace

The branch_trace_generator.py script generates synthetic branch traces that are used by the simulator

to evaluate each branch predictor. To generate a branch trace, you can use the command below:python branch_trace_generator.py --trace <trace_file.csv> --branches<number_of_branches> --seed <random_seed>--trace (optional): path to the branch trace file (default to branch_trace.csv)--branches (optional): Specifies the number of branches to generate. Default is 10,000.

--seed (compulsory): Specifies the random seedThe generated trace is stored in a file called branch_trace.csv and contains two columns:BranchAddress: The address of the branch instruction.

Outcome: The actual outcome (taken or not taken).

Running the Branch Predictor SimulatorOnce the trace file has been generated, you can run the main simulator using the main_simulator.py script.python branch_simulator.py --trace <trace_file.csv> --x<interval_length> --fast--trace (optional): path to the branch trace file (default to branch_trace.csv)--x (optional): Specifies the number of branches for calculating interval-based accuracy (default is 10).--fast (optional): Skips the 2-second pause between intervals, making the simulationrun faster.The simulator reads the branch_trace.csv (unless a different name was provided) file and runs each of theimplemented branch predictors, providing cumulative accuracy statistics during and after the simulation.Logs and Output Data

Real-Time StatisticsThe simulator logs real-time statistics in a file named realtime_stats.txt. This file contains cumulativeaccuracy information for each branch predictor during the simulation, formatted as follows:Predictor, Branches Processed, Cumulative Accuracy (%)Predictor-Specific LogsEach predictor generates a detailed log of predictions during the simulation. These logs are stored in the logsdirectory, with one file per predictor, e.g., logs/One_Bit_log.txt. Each file contains information in theformat:Branch: <branch_number>, Correct: <0_or_1>Branch HistoryTable (BHT) LogsThe simulator also savesthe state of the Branch History Table (BHT) for applicable predictorsin the bht_logsdirectory. Each predictor's BHT log provides insight into the internal state of the predictor after the simulation.Analysis

You can inspect the generated log files to plot the data using external tools like Python, MATLAB, orspreadsheet software for more detailed analysis.Branch PredictorsExplained

  1. Static PredictorsStatic Taken / Not Taken: These predictors always predict the branch will be taken (or not taken). Nolearning occurs.
  1. One-Bit Branch PredictorMaintains a Branch History Table (BHT) that stores a single bit for each branch address. This bitrepresents whether the branch was previously taken or not. The predictor代写Branch Predictor Simulator  simply repeats the lasoutcome.
  1. Two-Bit Branch PredictoUtilizes a two-bit saturating counter for each branch address. The counter ranges from 00 (strongly nottaken) to 11 (strongly taken). Prediction is considered taken if the counter value is 10 or higher. Thecounter should be incremented or decremented based on the actual outcome.
  1. Bimodal Branch PredictorUses a fixed-size BHT indexed by the lower bits of the branch address. Each entry in the BHT has a twobit counter similar to the Two-Bit Predictor. The prediction accuracy is improved by reducing aliasing inthe prediction table.

GShare Branch PredictoEmploys global branch history to determine prediction outcomes. It should XOR the global historyregister with the branch address to generate an index into the BHT. This approach helps to correlatepredictions across different branches.

  1. Hybrid Branch PredictorCombines the GShare and Bimodal predictors. A choice table determines which predictor (GShare orBimodal) should be trusted for each branch. The choice table is updated to improve the accuracy ofprediction based on which predictor was correct for each branch.Anticipated StepsThese steps can serve as a high-level guideline to aid you during the project:
  1. Run branch_trace_generator.py script to generate the trace file given your # as the seedparameter.
  1. Implement branch predictors: static, 1-bit, 2-bit, bimodal, gshare, and hybrid branch predictors
  2. Run branch_simulator.py script to test out the different branch predictors using the trace filegenerated in step 1.
  1. Complete the report.Submission Requirements
  1. Project Report
  2. Code Implementations of the branch predictors mentioned above.Code ImplementationsYou need to implement various branch predictors in branch_predictors.py file. For each predictor, youneed to implement three functions__init__(self): constructor for the predictor. You can utilize this function to initialize the predictorpredict(self, address): given an address return a prediction (either 0 for not-taken, or 1 for taken)update(self, address, actual_outcome): this function is utilized to update the state of thepredictor with the actual outcome of the branch instruction.Report MinimumRequirementsDescribe in 100 words or less how the provided simulator enable testing various branch predictions.
  1. Table with the overall accuracy of each predictor of the generated trace file.
  2. Plots that show the branch predictor accuracy over time. The x-axis should be the Number of Branchesand the y-axis should be the Prediction Accuracy (%).
  1. Elaborate on the results of the predictors and why some predictors performed better than othersDirectory Structurehe simulator organizes its files and logs as follows:

.

├── branch_predictors.py # Branch predictor implementations

├── branch_trace_generator.py # Generates branch trace files

├── branch_simulator.py # Main branch predictor simulator

├── branch_trace.csv # Generated branch trace file

├── logs/ # Logs for each branch predictor

│ ├── One_Bit_log.txt # Detailed logs for the One-Bit predictor

│ └── ...

├── bht_logs/ # Logs for BHT states

│ ├── GShare_bht.txt # GShare BHT state

│ └── ...

└── realtime_stats.txt # Real-time statistics logSystem Requirements

Python 3.tabulate for tabular progress displayTo install the dependencies, run:pip install tabulate

标签:file,Branch,trace,Simulator,simulator,Predictor,branch,predictor
From: https://www.cnblogs.com/comp9021T2/p/18558568

相关文章

  • git拉取代码报错 xxx has no tracked branch
    git拉取代码报错xxxhasnotrackedbranch场景:coding改密码后,用git拉取代码报错:本地分支与远程分支没有关联报错如下:解决方案:关联分支gitbranch--set-upstream-toorigin/masterfeat_20241107重新拉取重新下载一份代码(略)......
  • CSC3050 Project 3: RISC-V Simulator
    CSC3050Project3:RISC-VSimulatorwithRVV1BackgroundRISC-V,anopenstandardinstructionsetarchitecture(ISA),hasrapidlybecomeapivotalforceinacademicresearchandindustrialdevelopmentduetoitsflexibilityandopen-sourcenature.Unlikep......
  • git提交提示本地分支 '(no branch)' (远程分支 = '(no branch)') 是无效的。引用名称
    这个错误提示表明你正在使用一个没有有效分支的Git仓库,或者是Git无法识别当前的分支(通常是由于HEAD被指向了一个无效或空的引用)。具体来说,`'(nobranch)'`是因为你当前处于一个`detachedHEAD`状态(即没有指向一个有效的分支),通常在你检出一个提交(而不是分支)时会出现这种情......
  • CSC3050 RISC-V Simulator with RVV
    CSC3050Project3:RISC-VSimulatorwithRVV1BackgroundRISC-V,anopenstandardinstructionsetarchitecture(ISA),hasrapidlybecomeapivotalforceinacademicresearchandindustrialdevelopmentduetoitsflexibilityandopen-sourcenature.Unlike......
  • SoccerPredictor:AI智能分析在足球预测中的优势
    一、引言在全球体育的璀璨星空中,足球无疑是最耀眼的星辰之一。即便是在全球疫情阴霾笼罩的2020年,欧洲杯依然吸引了52.3亿观众的瞩目,而刚刚过去的2024年欧洲杯,更是刷新赛事观众人数的历史记录。对于广大球迷而言,观看比赛之余,预测赛事走向亦成为了一种独特的乐趣与挑战。然......
  • AI预测足球比赛结果基于深度数据分析与机器学习SoccerPredictor
    在科技日新月异的今天,人工智能已经渗透到我们生活的方方面面,从智能家居到自动驾驶汽车,从虚拟助手到医疗诊断。而现在,AI甚至开始涉足体育领域,尤其是在预测足球比赛结果这一领域展现出了惊人的能力。那么,AI是如何做到预测足球比赛结果的呢?让我们一起揭开这项技术的神秘面纱。......
  • CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality
    文章信息标题CDDFuse:Correlation-DrivenDual-BranchFeatureDecompositionforMulti-ModalityImageFusion会议及时间CVPR2023主要内容为了解决建模跨模态特征和分解期望模态特有和模态共有特征的挑战,本文提出了一种用于多模态图像融合的双分支Transformer-CNN架构CDD......
  • 人工智能是怎么来预测足球比赛结果的?SoccerPredictor
    在科技日新月异的今天,人工智能已经渗透到我们生活的方方面面,从智能家居到自动驾驶汽车,从虚拟助手到医疗诊断。而现在,AI甚至开始涉足体育领域,尤其是在预测足球比赛结果这一领域展现出了惊人的能力。那么,AI是如何做到预测足球比赛结果的呢?让我们一起揭开这项技术的神秘面纱。......
  • 当 smartcardsimulator.dll 加载错误时的解决策略
    smartcardsimulator.dll文件通常与智能卡模拟器或智能卡相关的应用程序有关。智能卡模拟器是一种软件工具,用于模拟智能卡的行为,以便开发人员测试和调试智能卡应用。smartcardsimulator.dll文件负责处理智能卡模拟的相关功能。当您看到“smartcardsimulator.dll加载错误”......
  • 【刷题笔记】[ABC180F] Unbranched
    【刷题笔记】Unbranched题意求\(N\)个点,\(M\)条边且满足以下条件的图的数量:1.图中无自环;2.每个点度数最多为2;3.连通块大小的最大值恰好为L。答案对\(10^9+7\)取模。\(1\leM,L\leN,2\leN\le300\)思路注意构造出来的图,不一定是联通的,所以容易联想到将一个联通分量......