首页 > 其他分享 >转载:【AI系统】昇腾推理引擎 MindIE

转载:【AI系统】昇腾推理引擎 MindIE

时间:2024-12-11 22:00:06浏览次数:4  
标签:RT AI 模型 支持 MindIE 推理

本文将介绍华为昇腾推理引擎 MindIE 的详细内容,包括其基本介绍、关键功能特性以及不同组件的详细描述。

本文内容将深入探讨 MindIE 的三个主要组件:MindIE-Service、MindIE-Torch 和 MindIE-RT,以及它们在服务化部署、大模型推理和推理运行时方面的功能特性和应用场景。通过本文的介绍,读者将对 MindIE 有一个全面的了解,包括其如何支持 AI 业务的高效运行和模型的快速部署。

MindIE 基本介绍

MindIE(Mind Inference Engine,昇腾推理引擎)是华为昇腾针对 AI 全场景业务的推理加速套件。通过分层开放 AI 能力,支撑用户多样化的 AI 业务需求,使能百模千态,释放昇腾硬件设备算力。支持多种主流 AI 框架,提供多层次编程接口,帮助用户快速构建基于昇腾平台的推理业务。

业界标准 RPC 接口高效对接业务层,支持 Triton 和 TGI 等主流推理服务框架,实现小时级应用部署。提供针对 LLM(transformer)和文生图(SD 模型)的加速参考代码和预置模型,开箱性能业界领先。少量代码实现训练向推理平滑迁移,昇腾训推同构小时级模型迁移,以及 GPU 模型向昇腾 2 人周高效迁移。

昇腾推理引擎支持请求并发调度和模型多实例并发调度,支持多种异步下发,多流水执行,实现高效的推理加速。支持从 PyTorch 和昇思对接从训练模型转换推理模型的过程,支持多种推理服务框架和兼容接口。提供基于昇腾架构亲和加速技术,覆盖推理全流程的图转换、组网、编译、推理执行、调试调优接口。

已发布 MindIE Service、MindIE Torch、MindIE RT 三个组件。

MindIE-Service

MindIE-Service 针对通用模型的推理服务化场景,实现开放、可扩展的推理服务化平台架构,支持对接业界主流推理框架接口,满足大语言模型、文生图等多类型模型的高性能推理需求。

MindIE-Server 作为推理服务端,提供模型服务化能力;MindIE-Client 提供服务客户端标准 API,简化用户服务调用。MindIE-Service 向下调用了 MindIE-LLM 组件能力。

MindIE-Torch

MindIE-Torch 是针对 Pytorch 框架模型的推理加速插件。Pytorch 框架上训练的模型利用 MindIE-Torch 提供的简易 C++/Python 接口,少量代码即可完成模型迁移,实现高性能推理。MindIE-Torch 向下调用了 MindIE-RT 组件能力。

MindIE-RT

MindIE-RT 是面向昇腾 AI 处理器的推理加速引擎,提供模型推理迁移相关开发接口及工具,能够将不同的 AI 框架(PyTorch、ONNX 等)上完成训练的算法模型统一为计算图表示,具备多粒度模型优化、整图下发以及推理部署等功能。集成 Transfomer 高性能算子加速库 ATB,提供基础高性能算子,和高效的算子组合技术(Graph)便于模型加速。

关键功能特性

服务化部署

MindIE-Service 是面向通用模型的推理服务化场景,实现开放、可扩展的推理服务化平台架构,支持对接业界主流推理框架接口,满足大语言模型、文生图等多类型模型的高性能推理需求。它的组件包括 MindIE-Server、MindIE-Client、Benchmark 评测工具等,一方面通过对接昇腾的推理加速引擎带来大模型在昇腾环境中的性能提升,另一方面,通过接入现有的主流推理框架生态,逐渐以性能和易用性牵引存量生态的用户向全自研推理服务化平台迁移。

支持的特性:

  • 支持大模型服务化快速部署。

  • 提供了标准的昇腾服务化接口,兼容 Triton/OpenAI/TGI/vLLM 等第三方框架接口。

  • 支持 Continuous Batching,PagedAttention。

  • 支持基于 Transformer 推理加速库(Ascend Transformer Boost)的模型接入,继承其加速能力,包括融合加速算子、量化等特性。

大模型推理

提供大模型推理能力,支持大模型业务全流程,逐级能力开放,使能大模型客户需求定制化。

  1. Pytorch 模型迁移

对接主流 Pytorch 框架,实现训练到推理的平滑迁移,提供通用的图优化并行推理能力,提供用户深度定制优化能力。MindIE-Torch 是推理引擎组件中针对 Pytorch 框架模型的推理加速插件。Pytorch 框架上训练的模型利用 MindIE-Torch 提供的简易 C++/Python 接口,少量代码即可完成模型迁移,实现高性能推理。

  1. MindIE-Torch TorchScript 支持以下功能特性
  • 支持 TorchScript 模型的编译优化,生成可直接在昇腾 NPU 设备加速推理的 TorchScript 模型。

  • 支持静态输入和动态输入,动态输入分为动态 Dims 和 ShapeRange 两种模式。

  • 编译优化时支持混合精度、FP32 以及 FP16 精度策略。

  • 支持用户自定义 converter 和自定义 pass。

  • 支持异步推理和异步数据拷贝。

  • 支持与 torch_npu 配套使用,算子可 fallback 到 torch_npu 执行。

  • 支持多语言 API(C++、Python)。

  1. MindIE-Torch ExportedProgram 支持以下功能特性:
  • 支持 ExportedProgram 的编译优化,生成可直接在昇腾 NPU 设备加速推理的 nn.Module 模型。

  • 支持静态输入和动态 ShapeRange 输入。

  • 编译优化时支持混合精度、FP32、FP16 精度策略。

  • 支持异步推理和异步数据拷贝。

  • 支持 Python API。

推理运行时

集成推理应用接口及 Transformer 加速库,提供推理迁移相关开发接口及工具,提供通用优化及并行推理能力》。MindIE-RT(Mind Inference Engine RT,昇腾推理引擎运行时)是针对昇腾 AI 处理器的推理加速引擎,提供 AI 模型推理场景下的商业化部署能力,能够将不同的 AI 框架上完成训练的算法模型统一为计算图表示,具备多粒度模型优化、整图下发以及推理部署等功能。

MindIE-RT 集成昇腾高性能算子加速库 ATB,为实现基于 Transformer 的神经网络推理加速引擎库,库中包含了各类 Transformer 类模型的高度优化模块,如 Encoder 和 Decoder 部分。

MindIE-RT 专注于为用户提供快速迁移、稳定精度以及极致性能的推理服务,让用户能够脱离底层硬件细节和不同平台框架的差异,专注于推理业务本身,实现高效的模型部署开发。并且专门针对大模型下的 Transformer 架构,提高 Transformer 模型性能,提供了基础的高性能的算子,高效的算子组合技术(Graph),方便模型加速。目前 MindIE-RT 已实现动态输入推理,解析框架模型等功能特性。

  1. MindIE-RT 支持以下功能特性
  • 支持多语言 API(C++, Python):详情参见 C++编程模型和 Python 编程模型。

  • 提供 parser,支持直接导入 AI 框架 ONNX 模型,详情参见解析框架模型。

  • 支持 Transformer 算子加速库,集成基础高性能算子,详情可见 ATB 高性能加速库使用。

  • 支持丰富的编译时优化方法和运行时优化方法,用户可以在昇腾 AI 处理器上占用较少的内存,部署更高性能的推理业务,提供的优化方法如:精度优化和常量折叠。

  1. 应用场景

MindIE-RT 是基于昇腾 AI 处理器的部署推理引擎,适用于通过 NPU、GPU、CPU 等设备训练的算法模型,为其提供极简易用且灵活的接口,实现算法从训练到推理的快速迁移。目前 MindIE-RT 的快速迁移能力已支持以下业务场景:

  • 计算机视觉。

  • 自然语言处理。

  • 推荐、检索。

  • 大模型对话。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~
转载自:| https://www.cnblogs.com/ZOMI/articles/18560892 | header |
| ---------------------------------------------- | ------ |
| | |

标签:RT,AI,模型,支持,MindIE,推理
From: https://www.cnblogs.com/xueaigc/p/18600857

相关文章

  • 转载:【AI系统】推理参数
    本文将介绍AI模型网络参数方面的一些基本概念,以及硬件相关的性能指标,为后面让大家更了解模型轻量化做初步准备。值得让人思考的是,随着深度学习的发展,神经网络被广泛应用于各种领域,模型性能的提高同时也引入了巨大的参数量和计算量(如下图右所示),一般来说模型参数量越大,精度越高,性......
  • 转载:【AI系统】推理引擎示例:AscendCL
    AscendCL作为华为Ascend系列AI处理器的软件开发框架,为用户提供了强大的编程支持。通过AscendCL,开发者可以更加高效地进行AI应用的开发和优化,从而加速AI技术在各个领域的应用和落地。AscendCL的易用性和高效性,使得它成为开发AI应用的重要工具之一。本文将介绍Ascend......
  • 转载:【AI系统】轻量级CNN模型综述
    神经网络模型被广泛的应用于工业领域,并取得了巨大成功。然而,由于存储空间以及算力的限制,大而复杂的神经网络模型是难以被应用的。首先由于模型过于庞大,计算参数多(如下图所示),面临内存不足的问题。其次某些场景要求低延迟,或者响应要快。所以,研究小而高效的CNN模型至关重要。本......
  • 转载:【AI系统】算子开发编程语言 Ascend C
    本文将深入探讨昇腾算子开发编程语言AscendC,这是一种专为昇腾AI处理器算子开发设计的编程语言,它原生支持C和C++标准规范,最大化匹配用户的开发习惯。AscendC通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模......
  • 转载:【AI系统】昇腾 AI 处理器
    本文将会介绍华为昇腾AI处理器的架构与卷积加速原理。昇腾AI处理器是华为基于达芬奇架构专为AI计算加速而设计的处理器,它支持云边端一体化的全栈全场景解决方案,具有高能效比和强大的3DCube矩阵计算单元,支持多种计算模式和混合精度计算。昇腾AI处理器的架构包括了AICor......
  • 转载:【AI系统】Ascend C 编程范式
    AI的发展日新月异,AI系统相关软件的更新迭代也是应接不暇,作为一篇讲授理论的文章,我们将尽可能地讨论编程范式背后的原理和思考,而少体现代码实现,以期让读者理解AscendC为何这样设计,进而随时轻松理解最新的AscendC算子的编写思路。本文将针对AscendC的编程范式进行详细讲......
  • 转载:【AI系统】昇腾 AI 架构介绍
    昇腾计算的基础软硬件是产业的核心,也是AI计算能力的来源。华为,作为昇腾计算产业生态的一员,是基础软硬件系统的核心贡献者。昇腾计算软硬件包括硬件系统、基础软件和应用使能等。而本文介绍的AI系统整体架构(如图所示),则是对应与昇腾AI产业的全栈架构较为相似。因此这里以昇腾......
  • 转载:【AI系统】Ascend C 语法扩展
    AscendC的本质构成其实是标准C++加上一组扩展的语法和API。本文首先对AscendC的基础语法扩展进行简要介绍,随后讨论AscendC的两种API——基础API和高阶API。接下来针对AscendC的几种关键编程对象——数据存储、任务间通信与同步,资源管理以及临时变量进行详细解读......
  • 转载:【AI系统】芯片的编程体系
    本篇幅主要探讨SIMD和SIMT的主要区别与联系,SIMT与CUDA编程之间的关系,并且会讨论GPU在SIMT编程本质,SIMD、SIMT与DSA架构,DSA架构的主要形态。目前已经有大量的AI芯片研发上市,但是如何开发基于硬件的编译栈与编程体系,让开发者更好地使用AI芯片,更好的发挥AI芯片......
  • 转载:【AI系统】昇腾数据布局转换
    NHWC的数据排布方式更适合多核CPU运算,NCHW的数据排布方式更适合GPU并行运算。那么接下来让我们了解一下在华为昇腾的NPU中,这种特征图的存储方式。截止到2024年,华为昇腾在私有格式的数据处理和特殊的数据形态越来越少,主要是得益于AI编译器和软件的迭代升级,更加合理......