首页 > 编程语言 >【MATLAB代码】基于IMM(Interacting Multiple Model)算法的目标跟踪,所用模型:CV、CA、CT

【MATLAB代码】基于IMM(Interacting Multiple Model)算法的目标跟踪,所用模型:CV、CA、CT

时间:2024-11-20 13:43:27浏览次数:3  
标签:... Multiple Interacting 矩阵 模型 IMM w3 w2

在这里插入图片描述

文章目录

3个模型的IMM(代码简介)

本MATLAB代码实现了基于IMM(Interacting Multiple Model)算法的目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。

源代码

只有一个m文件,如下:

% 基于IMM算法的目标跟踪,三模型IMM
% 2024-09-21/Ver1
clc; clear; close all;  % 清除命令窗口、工作空间和关闭所有图形窗口
rng('default'); rng(0); % 设置随机数生成器的默认状态,以确保可重复性

%% 仿真参数设置
time = 100;            % 仿真迭代次数
T = 1;                  % 采样间隔(时间步长)
w2 = 3 * 2 * pi / 360; % 模型2的转弯率(3度)
w3 = -3 * 2 * pi / 360; % 模型3的转弯率(-3度)
H = [1, 0, 0, 0;       % 模型量测矩阵
     0, 0, 1, 0];     
G = [T^2 / 2, 0;      % 模型过程噪声加权矩阵
     T, 0;
     0, T^2 / 2;
     0, T];  
R = 10 * diag([1, 1]); % 模型量测噪声协方差矩阵
Q = 0.1 * diag([1, 1]); % 模型过程噪声协方差矩阵
F1 = [1, T, 0, 0;     % 模型1状态转移矩阵(匀速直线运动)
      0, 1, 0, 0;
      0, 0, 1, T;
      0, 0, 0, 1];  
F2 = [1, sin(w2 * T) / w2, 0, (cos(w2 * T) - 1) / w2; % 模型2状态转移矩阵(左转弯)
      0, cos(w2 * T), 0, sin(w2 * T);
      0, (1 - cos(w2 * T)) / w2, 1, sin(w2 * T) / w2;
      0, -sin(w2 * T), 0, cos(w2 * T)];            
F3 = [1, sin(w3 * T) / w3, 0, (cos(w3 * T) - 1) / w3; % 模型3状态转移矩阵(右转弯)
      0, cos(w3 * T), 0, sin(w3 * T);
      0, (1 - cos(w3 * T)) / w3, 1, sin(w3 * T) / w3;
      0, -sin(w3 * T), 0, cos(w3 * T)];            

% 完整代码和相关函数,见:https://gf.bilibili.com/item/detail/1106540012

运行结果

运行上述代码后,可以得到如下结果:

  • 目标的运动轨迹:
    在这里插入图片描述
    速度误差和位置误差:
    在这里插入图片描述

多模型的概率(左图是画在同一幅图上的,右图是画在不同的子图上的):
在这里插入图片描述

代码介绍

  1. 代码概述
    这段代码实现了基于 IMM(Interacting Multiple Model)算法的目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。

  2. 初始化部分

clc; clear; close all;  % 清除命令窗口、工作空间和关闭所有图形窗口
rng('default'); rng(0); % 设置随机数生成器的默认状态,以确保可重复性

这部分代码清理 MATLAB 环境并设置随机数种子,确保每次运行程序的结果一致。

  1. 仿真参数设置
time = 1000;            % 仿真迭代次数
T = 1;                  % 采样间隔(时间步长)
w2 = 3 * 2 * pi / 360; % 模型2的转弯率(3度)
w3 = -3 * 2 * pi / 360; % 模型3的转弯率(-3度)

这里定义了仿真所需的参数,包括时间步长和转弯率。H、G、R 和 Q 分别是量测矩阵、过程噪声加权矩阵、量测噪声协方差矩阵和过程噪声协方差矩阵。

  1. 状态转移矩阵定义
F1 = [...];  % 匀速直线运动
F2 = [...];  % 左转弯
F3 = [...];  % 右转弯

这部分定义了三种不同运动模型的状态转移矩阵,描述了如何从当前状态预测下一个状态。

  1. 生成量测数据
x = zeros(4, time);        % 状态数据矩阵
z = zeros(2, time);        % 含噪声量测数据

初始化状态和量测数据矩阵,并生成真实状态和含噪声的量测数据。通过循环,按照设定的时间段使用不同的运动模型更新目标状态。

  1. IMM 算法迭代
% 初始化
X_IMM = zeros(4, time);   % IMM算法模型综合状态估计值
P_IMM = zeros(4, 4, time); % IMM算法模型综合状态协方差矩阵

这部分代码初始化 IMM 算法的状态估计值和协方差矩阵,设置初始状态和模型转移概率矩阵。

  1. 迭代过程
for t = 1:time - 1
    % 第一部分 Interacting(只针对IMM算法)
    c_j = pij' * u_IMM(:, t); % 计算混合概率的归一化因子
    ...
    % 第二步 -- 卡尔曼滤波
    [x_CV, P_CV, r_CV, S_CV] = Kalman(...);
    ...
    % 第三步 -- 模型概率更新
    [u_IMM(:, t + 1)] = Model_P_up(...);
    ...
    % 第四步 -- 模型综合
    [X_IMM(:, t + 1), P_IMM(:, :, t + 1)] = Model_mix(...);
end

在这个迭代过程中,程序首先计算当前模型的混合概率,然后使用卡尔曼滤波器对每个模型的状态进行估计。接着更新模型的概率,并综合各模型的状态和协方差。

  1. 绘图部分
figure;
plot(z_true(1, :), z_true(2, :), 'DisplayName', '真实值');
...
title('目标运动轨迹'); % 图表标题
xlabel('x/m'); ylabel('y/m'); % 坐标轴标签
legend; % 添加图例

最后,程序生成多幅图表,展示目标运动轨迹、位置误差、速度误差以及模型概率的变化。这些图表帮助分析模型的跟踪性能。

  1. 函数定义
    程序中还定义了几个函数,例如 K a l m a n Kalman Kalman、 M o d e l _ m i x Model\_mix Model_mix 和 M o d e l _ P _ u p Model\_P\_up Model_P_up,用于执行卡尔曼滤波、模型综合和模型概率更新。这些函数模块化了代码,使其更易于理解和维护。

总结

整体而言,这段代码展示了如何使用 IMM 算法结合卡尔曼滤波实现目标跟踪。通过不同的运动模型和状态估计,能够有效地预测目标的运动轨迹,并提供相应的误差分析。

如有需求,可通过问文末卡片联系作者

标签:...,Multiple,Interacting,矩阵,模型,IMM,w3,w2
From: https://blog.csdn.net/callmeup/article/details/143236190

相关文章

  • 【IMM EKF MATLAB CVCA】IMM滤波器,结合匀速运动 (Constant Velocity, CV) 和匀加速运
    文章目录程序简介运行截图程序代码程序讲解概述主要功能详细讲解1.初始化2.状态转移矩阵和协方差矩阵3.生成真实数据4.IMM算法5.结果后处理与可视化6.卡尔曼滤波函数总结程序简介该函数实现了交互式多模型(IMM)滤波器,结合了匀速运动(ConstantVelocity,......
  • 【MATLAB代码】基于EKF的IMM,三个模型的交互,包括:CV,CA,CT,附源代码下载链接
    基于交互多模型(IMM)算法的目标跟踪,使用了三种运动模型:匀速运动(CV)、匀加速运动(CA)和匀转弯运动(CT)。滤波方法为EKF文章目录运行结果源代码运行结果详解代码详解概述主要功能代码详细介绍初始化与仿真参数设置定义模型参数状态转移矩阵定义生成真实数据IMM......
  • 【轻量化】YOLOv8 更换骨干网络之 MobileNetv4 | 模块化加法!非 timm 包!
    之前咱们在这个文章中讲了timm包的加法,不少同学反馈要模块化的加法,那么这篇就讲解下模块化的加法,值得注意的是,这样改加载不了mobilebnetv4官方开源的权重了~论文地址:https://arxiv.org/pdf/2404.10518代码地址:https://github.com/tensorflow/models/blob/master/offic......
  • Introspect M5513-DDR5 MR-DIMM Module Test System
    M5513DDR5MR-DIMMModuleTestSystemComplete ChaaracterizationandFuncationalTestingofMR-DIMMModulesTheM5513isanall-inclusivememorytestsystemfornext-generationDDR5multiplexed-rankdualinline memorymodules(MR-DIMM).Operating......
  • Sigrity SPEED2000 Power Ground Noise Simulation模式如何进行电源地噪声分析操作指
    SigritySPEED2000PowerGroundNoiseSimulation模式如何进行电源地噪声分析操作指导-SODIMMSigritySpeed2000是时域仿真分析工具,PowerGroundNoiseSimulation模式可以观测器件的时域电压波形和观测电源地空间电压分布,以下图为例进行分析用Speed2000这个工具打开文件......
  • timm 库学习总结
    timm库是聚合了各种SOTA图像分类模型的python库,里面有上千种模型,大部分模型还提供了在ImageNet数据集上预训练的权重。典型的如Resnet系列、Inception系列、ConvNeXt系列,以及基于ViT的模型。timm库支持的模型名称可通过内置的查询函数timm.list_models查看,各种模型性能评估排......
  • 【漏洞复现】灵当CRM multipleUpload.php 任意文件上传漏洞
    免责声明:        本文旨在提供有关特定漏洞的信息,以帮助用户了解潜在风险。发布此信息旨在促进网络安全意识和技术进步,并非出于恶意。读者应理解,利用本文提到的漏洞或进行相关测试可能违反法律或服务协议。未经授权访问系统、网络或应用程序可能导致法律责任或严......
  • 如何解决ffmpeg安装报错ERROR: You have requested merging of multiple formats but
    ......
  • 【MATLAB代码】三个CT模型的IMM例程,各CT旋转速率不同,适用于定位、导航、目标跟踪
    三个CT模型,各CT模型下的运动旋转速率不同,适用于定位、导航、目标跟踪文章目录代码构成运行结果源代码代码讲解概述代码结构1.初始化2.仿真参数设置3.生成量测数据4.IMM迭代5.绘图主要功能函数部分1.卡尔曼滤波函数2.模型综合函数3.模型概率更新函数总结......
  • TI-Trends in Immunotherapy
    @目录一、征稿简介二、重要信息三、服务简述四、投稿须知一、征稿简介二、重要信息期刊官网:https://ais.cn/u/3eEJNv三、服务简述TrendsinImmunotherapy是一本开放获取的同行评审期刊,涵盖与所有基于免疫系统的领域相关的各个学科。TI的目标受众包括来自学术界、医疗......