首页 > 其他分享 >第0章 前言提要与本课程所要封装在Pycharm的函数库

第0章 前言提要与本课程所要封装在Pycharm的函数库

时间:2022-10-29 21:25:39浏览次数:46  
标签:封装 函数库 predict self return train theta Pycharm def

 

各函数包与函数模块之间的所属关系如图:

注意,所有函数包以及Notbook文件都是所属父文件夹的同级别文件,只有这样才能顺利调用所需函数

 

 

 

 

各函数包如下:

kNN

 1 import numpy as np
 2 from math import sqrt
 3 from collections import Counter
 4 
 5 
 6 class KNNClassifier:
 7 
 8     def __init__(self, k):
 9         """初始化kNN分类器"""
10         assert k >= 1, "k must be valid"
11         self.k = k
12         self._X_train = None
13         self._y_train = None
14 
15     def fit(self, X_train, y_train):
16         """根据训练数据集X_train和y_train训练kNN分类器"""
17         assert X_train.shape[0] == y_train.shape[0],\
18             "the size of X_train must be equal to the size of y_train"
19         assert self.k <= X_train.shape[0],\
20             "the size of X_train must be at least k ."
21 
22         self._X_train = X_train
23         self._y_train = y_train
24         return self
25 
26     def predict(self, X_predict):  # predict(self, X_predict)
27         """给定待预测数据集X_predict,返回X_predict的结果向量"""
28         assert self._X_train is not None and self._y_train is not None,\
29             " must fit before predict!"
30         assert X_predict.shape[1] == self._X_train.shape[1],\
31             " the feature number of X_predict must be equal to X_train"
32 
33         y_predict = [self._predict(x) for x in X_predict]
34         return np.array(y_predict)
35 
36     def _predict(self, x):
37         """给定单个待测数据x,返回x的预测结果值"""
38         assert x.shape[0] == self._X_train.shape[1],\
39             "the feature number of x must be equal to x_train"
40         distances = [sqrt(np.sum((x_train - x) ** 2))
41                     for x_train in self._X_train]
42         nearest = np.argsort(distances)
43 
44         topK_y = [self._y_train[i] for i in nearest[:self.k]]
45         votes = Counter(topK_y)
46 
47         return votes.most_common(1)[0][0]
48 
49     def __repr__(self):
50         return "KNN(k=%d)" % self.k

 

KNN_function

 1 # KNN_classify()
 2 import numpy as np
 3 from math import sqrt
 4 from collections import Counter
 5 
 6 
 7 def KNN_classify (k, X_trian, y_trian, x):
 8     assert 1 <= k <= X_trian.shape[0], ' k must be valid'
 9     assert X_trian.shape[0] == y_trian.shape[0],\
10         'the size of X_trian must equal to the size of y_trian '
11     assert X_trian.shape[1] == x.shape[0],\
12         "the feature number of must be equal to X_trian "
13 
14     distances = [sqrt(np.sum(x_trian - x) ** 2) for x_trian in X_trian]
15     nearest = np.argsort(distances)
16     topk_y = [y_trian[i] for i in nearest[:k]]
17     votes = Counter(topk_y)
18     return votes.most_common(1)[0][0]
19 
20 
21 print(" KNN_classify 已加载.")

 

playML:

kNN.py

 1 import numpy as np
 2 from math import sqrt
 3 from collections import Counter
 4 from .metrics import accuracy_score  # from .metrics 报错
 5 
 6 
 7 class KNNClassifier:
 8 
 9     def __init__(self, k):
10         """初始化kNN分类器"""
11         assert k >= 1, "k must be valid"
12         self.k = k
13         self._X_train = None
14         self._y_train = None
15 
16     def fit(self, X_train, y_train):
17         """根据训练数据集X_train和y_train训练kNN分类器"""
18         assert X_train.shape[0] == y_train.shape[0],\
19             "the size of X_train must be equal to the size of y_train"
20         assert self.k <= X_train.shape[0],\
21             "the size of X_train must be at least k ."
22 
23         self._X_train = X_train
24         self._y_train = y_train
25         return self
26 
27     def predict(self, X_predict):  # predict(self, X_predict)
28         """给定待预测数据集X_predict,返回X_predict的结果向量"""
29         assert self._X_train is not None and self._y_train is not None,\
30             " must fit before predict!"
31         assert X_predict.shape[1] == self._X_train.shape[1],\
32             " the feature number of X_predict must be equal to X_train"
33 
34         y_predict = [self._predict(x) for x in X_predict]
35         return np.array(y_predict)
36 
37     def _predict(self, x):
38         """给定单个待测数据x,返回x的预测结果值"""
39         assert x.shape[0] == self._X_train.shape[1],\
40             "the feature number of x must be equal to x_train"
41         distances = [sqrt(np.sum((x_train - x) ** 2))
42                      for x_train in self._X_train]
43         nearest = np.argsort(distances)
44 
45         topK_y = [self._y_train[i] for i in nearest[:self.k]]
46         votes = Counter(topK_y)
47 
48         return votes.most_common(1)[0][0]
49 
50     def score(self, X_test, y_test):
51         """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
52         y_predict = self.predict(X_test)  # self._predict(X_test),大意了直接采纳第一个提示
53         return accuracy_score(y_test, y_predict)
54 
55     def __repr__(self):
56         return "KNN(k=%d)" % self.k

 

LinearRegression.py

  1 import numpy as np
  2 from .metrics import r2_score
  3 # 源名需加kNN
  4 
  5 class LinearRegression:
  6 
  7     def __int__(self):
  8         """初始化 Linear Regression 模型"""
  9         self.coef_ = None
 10         self.interception_ = None
 11         self._theta = None
 12 
 13     def fit_normal(self, X_train, y_train):
 14         """根据训练数据集 X_train, y_train 训练 Linear Regression 模型"""
 15         assert X_train.shape[0] == y_train.shape[0], \
 16             "the size of X_train must be equal to the size of y_train"
 17 
 18         X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
 19         self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
 20 
 21         self.interception_ = self._theta[0]
 22         self.coef_ = self._theta[1:]
 23 
 24         return self
 25 
 26     def fit_gd(self, X_train, y_train, eta=0.001, n_iters=1e4):
 27         """根据训练数据集 X_trian, y_train,使用梯度下降法训练 Linear Regression模型"""
 28         assert X_train.shape[0] == y_train.shape[0], \
 29             "the size of X_train must equal to the size of y_train"
 30 
 31         def J(theta, X_b, y):
 32             try:
 33                 return np.sum((y - X_b.dot(theta)) ** 2) / len(X_b)
 34             except:
 35                 return float('inf')
 36 
 37         def dJ(theta, X_b, y):
 38             # res = np.empty(len(theta))
 39             # res[0] = np.sum(X_b.dot(theta) - y)
 40             # for i in range(1, len(theta)):
 41             #     res[i] = (X_b.dot(theta) - y).dot(X_b[:, i])
 42             # return res * 2 / len(theta)
 43             return X_b.T.dot(X_b.dot(theta) - y) * 2 / len(y)
 44 
 45         def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e5, epsilon=1e-8):
 46 
 47             theta = initial_theta
 48             # theta_history.append(initial_theta)
 49             i_iters = 0
 50 
 51             while i_iters < n_iters:
 52                 gradient = dJ(theta, X_b, y)
 53                 last_theta = theta
 54                 theta = theta - eta * gradient
 55                 # theta_history.append(theta)
 56 
 57                 if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
 58                     break
 59                 i_iters += 1
 60 
 61             return theta
 62 
 63         X_b = np.hstack([np.ones((len(X_trian), 1)), X_trian])
 64         initial_theta = np.zeros(X_b.shape[1])
 65         self._theta = gradient_descent(X_b, y_train, initial_theta, eta)
 66 
 67         self.interception_ = self._theta[0]
 68         self.coef_ = self._theta[1:]
 69 
 70         return self
 71 
 72     def fit_sgd(self, X_train, y_train, n_iters=5, t0=5, t1=50):
 73         """根据训练数据集 X_trian, y_train,使用梯度下降法训练 Linear Regression模型"""
 74         assert X_train.shape[0] == y_train.shape[0], \
 75             "the size of X_train must equal to the size of y_train"
 76         assert n_iters >= 1,\
 77             "the size of n_iters must >= 1"
 78         def dJ_sgd(theta, X_b_i, y_i):
 79 
 80             return X_b_i.T.dot(X_b_i.dot(theta) - y_i) * 2
 81 
 82         def sgd(X_b, y, initial_theta, n_iters, t0=5, t1=50):
 83 
 84             def learning_rate(t):
 85                return t0 / (t + t1)
 86 
 87             theta = initial_theta
 88             m = len(X_b)
 89 
 90             for cur_iter in range(n_iters):
 91                indexes = np.random.permutation(m)
 92                X_b_new = X_b[indexes]
 93                y_new = y[indexes]
 94                for i in range(m):
 95                    gradient = dJ_sgd(theta, X_b_new[i], y_new[i])
 96                    theta = theta - learning_rate(cur_iter * m + i) * gradient
 97             return theta
 98 
 99 
100         X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
101         initial_theta = np.zeros(X_b.shape[1])
102         self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)
103 
104         self.interception_ = self._theta[0]
105         self.coef_ = self._theta[1:]
106         return self
107 
108 
109 
110     def predict(self, X_predict):
111         """给定待测数据集 X_predict,返回表示 X_predict 的结果向量 """
112         assert self.interception_ is not None and self.coef_ is not None, \
113             "must fit before predict!"
114         assert X_predict.shape[1] == len(self.coef_), \
115             "the feature number of X_predict must be equal to X_train"
116 
117         X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
118         return X_b.dot(self._theta)
119 
120     def score(self, X_test, y_test):
121         """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
122 
123         y_predict = self.predict(X_test)
124         return r2_score(y_test, y_predict)
125 
126     def __repr__(self):
127         return "LinearRegression()"

 

LogistcRegression.py

 1 import numpy as np
 2 from .metrics import accuracy_score
 3 # 源名需加kNN
 4 
 5 class LogisticRegression:
 6 
 7     def __int__(self):
 8         """初始化 LogisticRegression 模型"""
 9         self.coef_ = None
10         self.interception_ = None
11         self._theta = None
12 
13     def _sigmoid(self, t):
14         return 1 / (1 + np.exp(-t))
15 
16     def fit(self, X_train, y_train, eta=0.001, n_iters=1e4):
17         """根据训练数据集 X_trian, y_train,使用梯度下降法训练 LogisticRegression模型"""
18         assert X_train.shape[0] == y_train.shape[0], \
19             "the size of X_train must equal to the size of y_train"
20 
21         def J(theta, X_b, y):
22             y_hat = self._sigmoid(X_b.dot(theta))
23             try:
24                 return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
25             except:
26                 return float('inf')
27 
28         def dJ(theta, X_b, y):
29             return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) * 2 / len(y)
30 
31         def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e5, epsilon=1e-8):
32 
33             theta = initial_theta
34             # theta_history.append(initial_theta)
35             i_iters = 0
36 
37             while i_iters < n_iters:
38                 gradient = dJ(theta, X_b, y)
39                 last_theta = theta
40                 theta = theta - eta * gradient
41                 # theta_history.append(theta)
42 
43                 if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
44                     break
45                 i_iters += 1
46 
47             return theta
48 
49         X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
50         initial_theta = np.zeros(X_b.shape[1])
51         self._theta = gradient_descent(X_b, y_train, initial_theta, eta)
52 
53         self.interception_ = self._theta[0]
54         self.coef_ = self._theta[1:]
55 
56         return self
57 
58     def predict_proba(self, X_predict):
59         """给定待测数据集 X_predict,返回表示 X_predict 的结果概率向量 """
60         assert self.interception_ is not None and self.coef_ is not None, \
61             "must fit before predict!"
62         assert X_predict.shape[1] == len(self.coef_), \
63             "the feature number of X_predict must be equal to X_train"
64 
65         X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
66         return self._sigmoid(X_b.dot(self._theta))
67 
68     def predict(self, X_predict):
69         """给定待测数据集 X_predict,返回表示 X_predict 的结果向量 """
70         assert self.interception_ is not None and self.coef_ is not None, \
71             "must fit before predict!"
72         assert X_predict.shape[1] == len(self.coef_), \
73             "the feature number of X_predict must be equal to X_train"
74 
75         proba = self.predict_proba(X_predict)
76         return np.array(proba >= 0.5, dtype='int')
77 
78     def score(self, X_test, y_test):
79         """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
80 
81         y_predict = self.predict(X_test)
82         return accuracy_score(y_test, y_predict)
83 
84     def __repr__(self):
85         return "LogisticRegression()"

metrics.py

 1 import numpy as np
 2 from math import sqrt
 3 
 4 
 5 def accuracy_score(y_ture, y_predict):
 6     """计算 y_ture与 y_predict之间的准确度"""
 7     assert y_ture.shape[0] == y_predict.shape[0]
 8     "the size of y_ture must be equal to the size of y_predict"
 9 
10     return sum(y_ture == y_predict)/len(y_ture)
11 
12 
13 def mean_squared_error(y_ture, y_predict):
14     """计算 y_ture,与 y_predict 之间的MSE """
15     assert len(y_ture) == len(y_predict), \
16         "the size of y_ture must be equal to the size of y_predict "
17     return np.sum((y_ture - y_predict) ** 2) / len(y_ture)
18 
19 
20 def root_mean_squared_error(y_ture, y_predict):
21     """计算 y_ture与 y_predict之间的RMSE"""
22     assert len(y_ture) == len(y_predict), \
23         "the size of y_ture must be equal to the size of y_predict "
24     return sqrt(mean_squared_error(y_ture, y_predict))
25 
26 
27 def mean_absolute_error(y_ture, y_predict):
28     """计算 y_ture,与 y_predict 之间的MAE """
29     assert len(y_ture) == len(y_predict), \
30         "the size of y_ture must be equal to the size of y_predict "
31     return np.sum(np.absolute(y_ture - y_predict)) / len(y_predict)
32 
33 
34 def r2_score(y_ture, y_predict):
35     """计算 y_ture,与 y_predict 之间的 R Square """
36     return 1 - mean_squared_error(y_ture, y_predict) / np.var(y_ture)
37 
38 def TN(y_ture, y_predict):
39     assert len(y_ture) == len(y_predict)
40     return np.sum((y_ture == 0) & (y_predict == 0))
41 
42 def FP(y_ture, y_predict):
43     assert len(y_ture) == len(y_predict)
44     return np.sum((y_ture == 0) & (y_predict == 1))
45 
46 def FN(y_ture, y_predict):
47     assert len(y_ture) == len(y_predict)
48     return np.sum((y_ture == 1) & (y_predict == 0))
49 
50 def TP(y_ture, y_predict):
51     assert len(y_ture) == len(y_predict)
52     return np.sum((y_ture == 1) & (y_predict == 1))
53 
54 def confusion_matrix(y_true, y_predict):
55     return np.array([
56         [TN(y_true,y_predict), FP(y_true,y_predict)],
57         [FN(y_true,y_predict), TP(y_true,y_predict)]
58     ])
59 
60 def precision_score(y_true, y_predict):
61     tp = TP(y_true, y_predict)
62     fp = FP(y_true, y_predict)
63     try:
64         return tp / (tp + fp)
65     except:
66         return 0.0
67 
68 def recall_score(y_true, y_predict):
69     tp = TP(y_true, y_predict)
70     fn = FN(y_true, y_predict)
71     try:
72         return tp / (tp + fn)
73     except:
74         return 0.0
75 
76 def f1_score(precision, recall):
77     try:
78         return 2 * precision * recall / ( precision + recall)
79     except:
80         return 0.0
81 
82 def TPR(y_true, y_predict):
83     tp = TP(y_true, y_predict)
84     fn = FN(y_true, y_predict)
85     try:
86         return tp / (tp + fn)
87     except:
88         return 0.0
89 
90 def FPR(y_true, y_predict):
91     tp = TP(y_true, y_predict)
92     tn = TN(y_true, y_predict)
93     try:
94         return tp / (tp + tn)
95     except:
96         return 0.0

model_selection.py

 1 import numpy as np
 2 
 3 
 4 def train_test_split(X, y, test_radio=0.2, seed=None):
 5     """将数据X和y按照test_radio分割成X_train、y_train、X_test、y_test"""
 6     assert X.shape[0] == y.shape[0],\
 7         "the size of X must be equal to the size of y"
 8     assert 0.0 <= test_radio <= 1.0,\
 9         "test_ration must be valid"
10 
11     if seed:
12         np.random.seed(seed)
13 
14     shuffled_indexes = np.random.permutation(len(X))
15 
16     test_size = int(test_radio * len(X))
17     test_indexes = shuffled_indexes[:test_size]
18     train_indexes = shuffled_indexes[test_size:]
19 
20     X_train = X[train_indexes]
21     y_train = y[train_indexes]
22 
23     X_test = X[test_indexes]
24     y_test = y[test_indexes]
25 
26     return X_train, X_test, y_train, y_test

PCA.py

 1 import numpy as np
 2 
 3 
 4 class PCA:
 5 
 6     def __init__(self, n_components):
 7         """ 初始化"""
 8         assert n_components >= 1, "n_components must be valid"
 9         self.n_components = n_components
10         self.components = None
11 
12     def fit(self, X, eta=0.01, n_iters=1e4):
13         """获得数据集 X 的前 n 个主成分"""
14         assert self.n_components <= X.shape[1], \
15             "n_components must not be greater than feature number of X"
16 
17         def demean(X):
18             return X - np.mean(X, axis=0)
19 
20         def f(w, X):
21             return np.sum((X.dot(w) ** 2)) / len(X)
22 
23         def df(w, X):
24             return X.T.dot(X.dot(w)) * 2.0 / len(X)
25 
26         def direction(w):
27             return w / np.linalg.norm(w)
28 
29         def first_componet(X, initial_w, eta, n_iters=1e4, epsilon=1e-8):
30             w = direction(initial_w)
31             i_iters = 0
32 
33             while i_iters < n_iters:
34                 gradient = df(w, X)
35                 last_w = w
36                 w = w + eta * gradient
37                 w = direction(w)  # 注意1:每次求一个单位方向
38                 if (abs(f(w, X) - f(last_w, X)) < epsilon):
39                     break
40 
41                 i_iters += 1
42 
43             return w
44 
45         X_pca = demean(X)
46         self.components_ = np.empty(shape=(self.n_components, X.shape[1]))
47         res = []
48         for i in range(self.n_components):
49             initial_w = np.random.random(X_pca.shape[1])
50             w = first_componet(X_pca, initial_w, eta, n_iters)
51             self.components_[i, :] = w
52 
53             X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w
54 
55         return self
56 
57     def transform(self, X):
58         """将X给定的,映射到各个主成分分量中"""
59         assert X.shape[1] == self.components_.shape[1]
60 
61         return X.dot(self.components_.T)
62 
63     def inverse_transform(self, X):
64         """将给定的X,反向映射回原来的特征空间"""
65         assert X.shape[1] == self.components_.shape[0]
66 
67         return X.dot(self.components_)
68 
69     def __repr__(self):
70         return "PCA(n_components=%d)" % self.n_components

preprocessing.py

 1 import numpy as np
 2 
 3 
 4 class StandardScaler:
 5 
 6     def __int__(self):
 7         self.mean_ = None
 8         self.scale_ = None
 9 
10     def fit(self, X):
11         """根据训练数据集X获得数据的均值和方差"""
12         assert X.ndim == 2, "The dimension of X must be 2"
13 
14         self.mean_ = np.array(np.mean(X[:, i]) for i in range(X.shape[1]))
15         self.scale_ = np.array(np.std(X[:, i]) for i in range(X.shape[1]))
16 
17         return self
18 
19     def transform(self, X):
20         """ 将 X 根据这个StandardScaler进行均值方差归一化处理"""
21         assert X.ndim == 2, "The dimension of X must be 2"
22         assert self.mean_ is not None and self.scale_ is not None,\
23             "must fit before transform!"
24         assert X.shape[1] == len(self.mean_), \
25             "The feature number of X must be equal to mean_ and std_"
26 
27         resX = np.empty(shape=X.shape, dtype=float)
28         for col in range(X.shape[1]):
29             resX[:, col] = (X[:, col] - self.mean_[col]) / self.scale_[col]
30         return resX

 

SimpleLinearRegression.py

 1 import numpy as np
 2 from .metrics import r2_score  # 加点下标运行报错,不加点下标jupyter 能运行
 3 
 4 
 5 class SimpleLinearRegression1:
 6 
 7     def __int__(self):
 8         """初始化 Simple Linear Regression 模型"""
 9         self.a_ = None
10         self.b_ = None
11 
12     def fit(self, x_train, y_train):
13         """根据训练数据集x_train,y_train 训练 Simple Linear Regression 模型"""
14         assert x_train.ndim == 1, \
15             " Simple Linear Regression can only solve single feature training data"
16         assert len(x_train) == len(y_train), \
17             "the size of x_train must be equal to the size of y_train"
18 
19         x_mean = np.mean(x_train)
20         y_mean = np.mean(y_train)
21 
22         num = 0.0
23         d = 0.0
24         for x, y in zip(x_train, y_train):
25             num += (x - x_mean) * (y - y_mean)
26             d += (x - x_mean) ** 2
27 
28         self.a_ = num / d
29         self.b_ = y_mean - self.a_ * x_mean
30 
31         return self
32 
33     def predict(self, x_predict):
34         """给定待测数据集x_predict,返回表示x_predict的结果向量"""
35         # print(x_predict.ndim)
36         assert x_predict.ndim == 1, \
37             "Simple Linear Regression can only solve single feature training data"
38         assert self.a_ is not None and self.b_ is not None, \
39             "must fit before predict!"
40 
41         return np.array([self._predict(x) for x in x_predict])  # predict(x)无下划线问题严重
42 
43     def _predict(self, x_single):
44         """给定单个待测数据 x_single,返回x_single的预测结果值"""
45         return self.a_ * x_single + self.b_
46 
47     def __repr__(self):
48         return "Simple Linear Regression1()"
49 
50 
51 class SimpleLinearRegression2:
52 
53     def __int__(self):
54         """初始化 Simple Linear Regression 模型"""
55         self.a_ = None
56         self.b_ = None
57 
58     def fit(self, x_train, y_train):
59         """根据训练数据集x_train,y_train 训练 Simple Linear Regression 模型"""
60         assert x_train.ndim == 1, \
61             " Simple Linear Regression can only solve single feature training data"
62         assert len(x_train) == len(y_train), \
63             "the size of x_train must be equal to the size of y_train"
64 
65         x_mean = np.mean(x_train)
66         y_mean = np.mean(y_train)
67 
68         num = 0.0
69         d = 0.0
70         num = (x_train - x_mean).dot(y_train - y_mean)
71         d = (x_train - x_mean).dot(x_train - x_mean)
72         self.a_ = num / d
73         self.b_ = y_mean - self.a_ * x_mean
74 
75         return self
76 
77     def predict(self, x_predict):
78         """给定待测数据集x_predict,返回表示x_predict的结果向量"""
79         # print(x_predict.ndim)
80         assert x_predict.ndim == 1, \
81             "Simple Linear Regression can only solve single feature training data"
82         assert self.a_ is not None and self.b_ is not None, \
83             "must fit before predict!"
84 
85         return np.array([self._predict(x) for x in x_predict])  # predict(x)无下划线问题严重
86 
87     def _predict(self, x_single):
88         """给定单个待测数据 x_single,返回x_single的预测结果值"""
89         return self.a_ * x_single + self.b_
90 
91     def score(self, x_test, y_test):
92         """根据测试数据集 x_test 和 y_test 确定当前模型的准确度"""
93         y_predict = self.predict(x_test)
94         return r2_score(y_test, y_predict)
95 
96     def __repr__(self):
97         return "Simple Linear Regression2()"

 

标签:封装,函数库,predict,self,return,train,theta,Pycharm,def
From: https://www.cnblogs.com/Cai-Gbro/p/16839885.html

相关文章

  • Demo52_关于封装
    //关于封装packagecom.oop.demo2;//private:私有属性,只能通过方法赋值publicclassFZ_4{//属性privateStringname;privateintage;......
  • vue 封装带图标的标题组件
    效果图: com-item-title.vue组件<template><divclass="com-item-title"><divclass="com-item-boxflex-center-center"><divclass="com-item-cont">......
  • js对象封装 Json字符
    不废话直接上代码:functionobjUserNickName(UserName,NickName){this.UserName=UserName;this.NickName=NickName;}objuser1=newobjUserNickName();objuser......
  • Hutool工具-TreeUtil封装树形结构数据,你用过了吗
    在开发过程中,必定会遇到树形结构的数据,一般都是后端直接从库里查询出来然后自定义方法去封装成树形树形返回给前端。其实Hutool工具类也提供了这个方法,这种方式使用起来也......
  • Pycharm 如何自动调整 Python 代码符合 pep8 编码规范
    前言学生时代,写的一手漂亮的好字,能给人留下好的印象。作为IT人,写的一手漂亮的代码也会给人留下美好的印象。代码就是自己的脸面,不管写质量怎样,首先要写的漂亮。Python......
  • Canvas实现多叶草效果的封装
    四叶草的效果:想要实现四叶草以及多叶草的效果,需要了解四叶草的构成。想要在网页上作图,则需要添加画布Canvas,而四叶草是由曲线构成的,可以使用贝塞尔曲线来绘制,HTML代码:<can......
  • python数据分析——lxml已下载但pycharm中使用仍然报错
    参照一本书(《python数据分析入门从数据获取到可视化》-沈祥壮)上的代码准备学习一下爬虫,但是卡在了标题中的错误中,尝试了很多方法:pipinstalllxml/pipuninstalllxml、......
  • js获取时间文件的封装
    /**年(Y)可用1-4个占位符*月(m)、日(d)、小时(H)、分(M)、秒(S)可用1-2个占位符*星期(W)可用1-3个占位符*季度(q为阿拉伯数字,Q为中文数字)可用1或4个占位符......
  • 【Spark 3.0-JavaAPI-pom】体验JavaRDD函数封装变化
    一、pom<properties><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><scala.version>2.......
  • java 封装
    封装(英语:Encapsulation)是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法。封装可以被认为是一个保护屏障,防止该类的代码和数据被外部类随机访问。要访问该类......