首页 > 其他分享 >第三十三讲:到底可不可以使用join?

第三十三讲:到底可不可以使用join?

时间:2024-11-04 20:48:01浏览次数:1  
标签:扫描 join buffer t2 可不可以 t1 驱动 第三十三

第三十三讲:到底可不可以使用join?

简概:

厌烦了平淡的开头

提出问题

​ 在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类:

  1. 我们 DBA 不让使用 join,使用 join 有什么问题呢?
  2. 如果有两个大小不同的表做 join,应该用哪个表做驱动表呢?

提出示例

​ 今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题。为了便于量化分析,我还是创建两个表 t1 和 t2 来和你说明。

CREATE TABLE `t2` (
  `id` int(11) NOT NULL,
  `a` int(11) DEFAULT NULL,
  `b` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `a` (`a`)
) ENGINE=InnoDB;

drop procedure idata;
delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=1000)do
    insert into t2 values(i, i, i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();

create table t1 like t2;
insert into t1 (select * from t2 where id<=100)

​ 可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据。

Index Nested-Loop Join

​ 我们来看一下这个语句:

select * from t1 straight_join t2 on (t1.a=t2.a);

​ 如果直接使用 join 语句,MySQL 优化器可能会选择表 t1 或 t2 作为驱动表,这样会影响我们分析 SQL 语句的执行过程。

​ 所以,为了便于分析执行过程中的性能问题,我改用 straight_join 让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。

​ 在这个语句里,t1 是驱动表,t2 是被驱动表。现在,我们来看一下这条语句的 explain 结果。


图 1 使用索引字段 join 的 explain 结果

​ 可以看到,在这条语句里,被驱动表 t2 的字段 a 上有索引,join 过程用上了这个索引,因此这个语句的执行流程是这样的:

  1. 从表 t1 中读入一行数据 R;
  2. 从数据行 R 中,取出 a 字段到表 t2 里去查找;
  3. 取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分;
  4. 重复执行步骤 1 到 3,直到表 t1 的末尾循环结束。

​ 这个过程是先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。

​ 它对应的流程图如下所示:


图 2 Index Nested-Loop Join 算法的执行流程

​ 在这个流程里:

  1. 对驱动表 t1 做了全表扫描,这个过程需要扫描 100 行;
  2. 而对于每一行 R,根据 a 字段去表 t2 查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描 100 行
  3. 所以,整个执行流程,总扫描行数是 200。

​ 现在我们知道了这个过程,再试着回答一下文章开头的两个问题。

扫描行和扫描索引是两个概念,不要弄混了,这里初始化的数据是唯一,扫描索引只找到了一个符合的普通索引,这个索引只对应一行记录,正好这个数据是一个键,所以只扫描了一行数据

先看第一个问题:能不能使用 join?

​ 假设不使用 join,那我们就只能用单表查询。我们看看上面这条语句的需求,用单表查询怎么实现。

  1. 执行select * from t1,查出表 t1 的所有数据,这里有 100 行;
  2. 循环遍历这 100 行数据:
    • 从每一行 R 取出字段 a 的值 $R.a
    • 执行select * from t2 where a=$R.a
    • 把返回的结果和 R 构成结果集的一行。

​ 可以看到,在这个查询过程,也是扫描了 200 行,但是总共执行了 101 条语句,比直接 join 多了 100 次交互。除此之外,客户端还要自己拼接 SQL 语句和结果。显然,这么做还不如直接 join 好。

101次=select * from t1和100次根据a值从t2找数据的次数

我们再来看看第二个问题:怎么选择驱动表?

​ 在这个 join 语句执行过程中,驱动表是走全表扫描,而被驱动表是走树搜索。

​ 假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2*log2M。假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。

log2M这边不会打,是log_2{M},懂?

​ 假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。因此整个执行过程,近似复杂度是 N + N2log2M。显然,N 对扫描行数的影响更大因此应该让小表来做驱动表。

​ 如果你没觉得这个影响有那么“显然”, 可以这么理解:N 扩大 1000 倍的话,扫描行数就会扩大 1000 倍;而 M 扩大 1000 倍,扫描行数扩大不到 10 倍。

两个结论

​ 到这里小结一下,通过上面的分析我们得到了两个结论:

  1. 使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好;
  2. 如果使用 join 语句的话,需要让小表做驱动表。但是,你需要注意,这个结论的前提是“可以使用被驱动表的索引”。接下来,我们再看看被驱动表用不上索引的情况。

Simple Nested-Loop Join

​ 现在,我们把 SQL 语句改成这样:

select * from t1 straight_join t2 on (t1.a=t2.b);

​ 由于表 t2 的字段 b 上没有索引,因此再用图 2 的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描

​ 你可以先设想一下这个问题,继续使用图 2 的算法,是不是可以得到正确的结果呢?如果只看结果的话,这个算法是正确的,而且这个算法也有一个名字,叫做“Simple Nested-Loop Join”。

​ 但是,这样算来,这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行。这还只是两个小表,如果 t1 和 t2 都是 10 万行的表(当然了,这也还是属于小表的范围),就要扫描 100 亿行,这个算法看上去太“笨重”了。

​ 当然,MySQL 也没有使用这个 Simple Nested-Loop Join 算法,而是使用了另一个叫作“Block Nested-Loop Join”的算法,简称 BNL。

Block Nested-Loop Join

​ 这时候,被驱动表上没有可用的索引,算法的流程是这样的:

  1. 把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;
  2. 扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。

​ 这个过程的流程图如下:


图 3 Block Nested-Loop Join 算法的执行流程

对应地,这条 SQL 语句的 explain 结果如下所示:


图 4 不使用索引字段 join 的 explain 结果

​ 可以看到,在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:1001000=10 万次。

​ 前面我们说过,如果使用 Simple Nested-Loop Join 算法进行查询,扫描行数也是 10 万行。因此,从时间复杂度上来说,这两个算法是一样的。但是,Block Nested-Loop Join 算法的这 10 万次判断是内存操作,速度上会快很多,性能也更好

​ 接下来,我们来看一下,在这种情况下,应该选择哪个表做驱动表。假设小表的行数是 N,大表的行数是 M,那么在这个算法里:两个表都做一次全表扫描,所以总的扫描行数是 M+N;内存中的判断次数是 M*N。

​ 可以看到,调换这两个算式中的 M 和 N 没差别,因此这时候选择大表还是小表做驱动表,执行耗时是一样的。

​ 然后,你可能马上就会问了,这个例子里表 t1 才 100 行,要是表 t1 是一个大表,join_buffer 放不下怎么办呢?

​ join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t1 的所有数据话,策略很简单,就是分段放。我把 join_buffer_size 改成 1200,再执行:

select * from t1 straight_join t2 on (t1.a=t2.b);

​ 执行过程就变成了:

  1. 扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步;
  2. 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;
  3. 清空 join_buffer;
  4. 继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步。

​ 执行流程图也就变成这样:


图 5 Block Nested-Loop Join -- 两段

​ 图中的步骤 4 和 5,表示清空 join_buffer 再复用。这个流程才体现出了这个算法名字中“Block”的由来,表示“分块去 join”。

​ 可以看到,这时候由于表 t1 被分成了两次放入 join_buffer 中,导致表 t2 会被扫描两次。虽然分成两次放入 join_buffer,但是判断等值条件的次数还是不变的,依然是 (88+12)1000=10 万次。

​ 我们再来看下,在这种情况下驱动表的选择问题。

​ 假设,驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λN,显然λ的取值范围是 (0,1)。

​ 所以,在这个算法的执行过程中:

  • 扫描行数是 N+λNM;
  • 内存判断 NM 次。

​ 显然,内存判断次数是不受选择哪个表作为驱动表影响的。而考虑到扫描行数,在 M 和 N 大小确定的情况下,N 小一些,整个算式的结果会更小。

所以结论是,应该让小表当驱动表。

​ 当然,你会发现,在 N+λNM 这个式子里,λ才是影响扫描行数的关键因素,这个值越小越好。

​ 刚刚我们说了 N 越大,分段数 K 越大。那么,N 固定的时候,什么参数会影响 K 的大小呢?(也就是λ的大小)

​ 答案是 join_buffer_size。join_buffer_size 越大,一次可以放入的行越多,分成的段数也就越少,对被驱动表的全表扫描次数就越少。

​ 这就是为什么,你可能会看到一些建议告诉你,如果你的 join 语句很慢,就把 join_buffer_size 改大。理解了 MySQL 执行 join 的两种算法,现在我们再来试着回答文章开头的两个问题。

总结第一个问题:能不能使用 join 语句?

​ 如果可以使用 Index Nested-Loop Join 算法,也就是说可以用上被驱动表上的索引,其实是没问题的;

​ 如果使用 Block Nested-Loop Join 算法,扫描行数就会过多。尤其是在大表上的 join 操作,这样可能要扫描被驱动表很多次,会占用大量的系统资源。所以这种 join 尽量不要用。所以你在判断要不要使用 join 语句时,就是看 explain 结果里面,Extra 字段里面有没有出现“Block Nested Loop”字样。

总结第二个问题是:如果要使用 join,应该选择大表做驱动表还是选择小表做驱动表?

​ 如果是 Index Nested-Loop Join 算法,应该选择小表做驱动表;

​ 如果是 Block Nested-Loop Join 算法:

  • 在 join_buffer_size 足够大的时候,是一样的;
  • 在 join_buffer_size 不够大的时候(这种情况更常见),应该选择小表做驱动表。

​ 所以,这个问题的结论就是,总是应该使用小表做驱动表。当然了,这里我需要说明下,什么叫作“小表”。

​ 我们前面的例子是没有加条件的。如果我在语句的 where 条件加上 t2.id<=50 这个限定条件,再来看下这两条语句:

select * from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=50;
select * from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=50;

​ 注意,为了让两条语句的被驱动表都用不上索引,所以 join 字段都使用了没有索引的字段 b。但如果是用第二个语句的话,join_buffer 只需要放入 t2 的前 50 行,显然是更好的。所以这里,“t2 的前 50 行”是那个相对小的表,也就是“小表”。

​ 我们再来看另外一组例子:

select t1.b,t2.* from  t1  straight_join t2 on (t1.b=t2.b) where t2.id<=100;
select t1.b,t2.* from  t2  straight_join t1 on (t1.b=t2.b) where t2.id<=100;

​ 这个例子里,表 t1 和 t2 都是只有 100 行参加 join。但是,这两条语句每次查询放入 join_buffer 中的数据是不一样的:

  • 表 t1 只查字段 b,因此如果把 t1 放到 join_buffer 中,则 join_buffer 中只需要放入 b 的值;
  • 表 t2 需要查所有的字段,因此如果把表 t2 放到 join_buffer 中的话,就需要放入三个字段 id、a 和 b。

​ 这里,我们应该选择表 t1 作为驱动表。也就是说在这个例子里,“只需要一列参与 join 的表 t1”是那个相对小的表。

所以,更准确地说,在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。

小结

​ 今天,我和你介绍了 MySQL 执行 join 语句的两种可能算法,这两种算法是由能否使用被驱动表的索引决定的。而能否用上被驱动表的索引,对 join 语句的性能影响很大。

​ 通过对 Index Nested-Loop Join 和 Block Nested-Loop Join 两个算法执行过程的分析,我们也得到了文章开头两个问题的答案:

如果可以使用被驱动表的索引,join 语句还是有其优势的;不能使用被驱动表的索引,只能使用 Block Nested-Loop Join 算法,这样的语句就尽量不要使用;在使用 join 的时候,应该让小表做驱动表。

问答

​ 最后,又到了今天的问题时间。我们在上文说到,使用 Block Nested-Loop Join 算法,可能会因为 join_buffer 不够大,需要对被驱动表做多次全表扫描。我的问题是,如果被驱动表是一个大表,并且是一个冷数据表,除了查询过程中可能会导致 IO 压力大以外,你觉得对这个 MySQL 服务还有什么更严重的影响吗?(这个问题需要结合上一篇文章的知识点)

答案

​ 我和你介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL)。我们发现在使用 NLJ 算法的时候,其实效果还是不错的,比通过应用层拆分成多个语句然后再拼接查询结果更方便,而且性能也不会差。但是,BNL 算法在大表 join 的时候性能就差多了,比较次数等于两个表参与 join 的行数的乘积,很消耗 CPU 资源。

标签:扫描,join,buffer,t2,可不可以,t1,驱动,第三十三
From: https://www.cnblogs.com/guixiangyyds/p/18526237

相关文章

  • mysql INNER JOIN、LEFT JOIN、RIGHT JOIN;内连接(等值连接)、左连接、右连接
    文档:https://www.runoob.com/mysql/mysql-join.html之前的分页优化写法(推荐使用INNERJOIN)selectt1.orderId,t1.venderId,t1.created,t1.modified,t1.pushCreated,t1.pushModified,t1.responseJsonfromyd_pop_ordert1,(selectorderIdfromyd_......
  • 代码随想录算法训练营第三十三天|Day33 动态规划
    62.不同路径https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html视频讲解:https://www.bilibili.com/video/BV1ve4y1x7Eu思路int**initDP(intm,intn){int**dp=(int**)malloc(sizeof(int*)*m);inti,j;for(i=0;i<......
  • Java多线程--Thread类的那些事3.--线程的6中状态和sleep()和 join()
      一.sleep()方法  首先在Thead类中有一个静态的sleep()方法,可以让线程进入到休眠状态即TEMD-WAITING状  在调用sleep()方法时需要注意的是在哪个线程里面调用sleep()方法,哪个线程就会进入阻塞状态.,在这个线程中的其他线程不会发生阻塞,只有当休眠时间到来这个......
  • 总结 JavaScript 中8种数组常用的操作 API,array.push,pop,shift,unshift,slice,splice
    前言JavaScript中数组是一个重要的数据结构,它相比于字符串有更多的方法,在一些算法题中我们经常需要将字符串转化为数组,使用数组里面的API进行操作。本篇文章总结了JavaScript中有许多数组常用的操作API,以下是一些常见的操作及其示例:1.push():在数组末尾添加一个或多个元素,并......
  • 操作系统(7) (POSIX--Linux线程编程---使用多线程计算平方pthread_t/create/join应用)
    1.代码目的我们希望创建一个程序:启动多个线程,每个线程计算一个数字的平方值。每个线程将计算结果返回给主线程。主线程接收每个线程的返回值,并将结果打印出来。在这个例子中,我们通过传递不同的参数给每个线程,来让每个线程计算不同数字的平方值。2.代码实现以下是代码的......
  • SQL中INNER JOIN和LEFT JOIN有什么区别
    SQL中INNERJOIN和LEFTJOIN两种连接类型的主要区别点包括:1.结果集中包含的行;2.对不匹配行的处理;3.应用场景;4.性能考量;5.使用建议。这些差异在数据库查询优化和数据关联时发挥关键作用,理解这些差异对于进行有效的数据分析至关重要。1.结果集中包含的行INNERJOIN:仅返回两......
  • 《DNK210使用指南 -CanMV版 V1.0》第三十三章 image元素绘制实验
    第三十三章image元素绘制实验1)实验平台:正点原子DNK210开发板2)章节摘自【正点原子】DNK210使用指南-CanMV版V1.03)购买链接:https://detail.tmall.com/item.htm?&id=7828013987504)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/k210/ATK-DNK210.html5)......
  • mysql之 关联表(left join | right join | inner join | union)
    一.首先给出两张表user表:用户基本信息表score表:分数表(学生在哪一天,哪一科目,所考分数)二.分别解释leftjoin,rightjoin,innerjoin,union1.leftjoin 原理userleftjoinscore=以user表为准,去查询所有user表成员的分数select*fromuserleftjoinscoreonuser.......
  • PG 的 MergeJoin 就是鸡肋
    好久没写博客,平时工作非常忙,而且现在对接的应用基本都是微服务架构。微服务这种架构平时也很难遇到复杂SQL,架构层面也限制了不允许有复杂SQL,平时处理的都是简单一批的点查SQL。基本上优化的内容就是业务,架构上改改和开发扯皮,每条SQL扣毫秒这样来搞,并发情况下程序接口的整体RT降......
  • Fork/Join框架
    Fork/Join框架是Java7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架packageforkjoin;importjava.util.concurrent.ExecutionException;importjava.util.concurrent.ForkJoinPool;importjava.util.co......