首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-10-29 10:36:12浏览次数:53  
标签:控制器 self parser datapath msg 开源 ofproto RYU port

实验6:开源控制器实践——RYU

一、实验目的

  1. 能够独立部署RYU控制器;
  2. 能够理解RYU控制器实现软件定义的集线器原理;
  3. 能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  1. 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

       搭建拓扑

       sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

    启动控制器

    ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links 

 

 

 

运行ryu并重新加载拓扑

   - ryu-manager L2Switch.py

  -  sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

 

 

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data

        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)

对p1和p2进行抓包,在目标主机中验证验证L2Switch 

使用命令mininet> xterm h2 h3开启主机终端

在h2主机终端中输入tcpdump -nn -i h2-eth0 在h3主机终端中输入tcpdump -nn -i h3-eth0

 

 

 

L2Switch和POX的Hub模块的不同

相同之处:两个模块使用的是洪泛转发ICMP报文,所以无论h1 ping h2还是h3,都能收到数据包。 

不同之处:L2Switch下发的流表无法在mininet上查看,而Hub可以查看,如图所示

 

 

重新启动拓扑

sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow13

查看流表

dpctl dump-flows -O OpenFlow13

 

 

from ryu.base import app_manager
from ryu.ofproto import ofproto_v1_3
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER,CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls


class Hub(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self,*args,**kwargs):
        super(Hub,self).__init__(*args,**kwargs)


    @set_ev_cls(ofp_event.EventOFPSwitchFeatures,CONFIG_DISPATCHER)
    def switch_features_handler(self,ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser

        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,ofproto.OFPCML_NO_BUFFER)]

        self.add_flow(datapath,0,match,actions,"default flow entry")

    def add_flow(self,datapath,priority,match,actions,remind_content):
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser

        inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]

        mod = ofp_parser.OFPFlowMod(datapath=datapath,priority=priority,
                                    match=match,instructions=inst);
        print("install to datapath,"+remind_content)
        datapath.send_msg(mod);


    @set_ev_cls(ofp_event.EventOFPPacketIn,MAIN_DISPATCHER)
    def packet_in_handler(self,ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser

        in_port = msg.match['in_port']

        print("get packet in, install flow entry,and lookback parket to datapath")

        match = ofp_parser.OFPMatch();
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]

        self.add_flow(datapath,1,match,actions,"hub flow entry")

        out = ofp_parser.OFPPacketOut(datapath=datapath,buffer_id=msg.buffer_id,
                                            in_port=in_port,actions=actions)

        datapath.send_msg(out);

(二)进阶要求

a)代码当中的mac_to_port的作用是什么?
答:mac_to_port的作用是保存mac地址到交换机端口的映射。
b)simple_switch和simple_switch_13在dpid的输出上有何不同?
答:simple_switch直接输出dpid,simple_switch_13对dpid进行了格式化,并填充为16位数字,会在不满16位的dpid前补0直到满16位。
c)相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
答:实现了交换机以特性应答消息来响应特性请求的功能。
d)simple_switch_13是如何实现流规则下发的?
答:在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。
e)switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
答:switch_features_handler下发流表的优先级比_packet_in_handler的优先级高。

 

 

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst, hard_timeout=hard_timeout)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst, hard_timeout=hard_timeout)
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]\

        actions_timeout=[]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            hard_timeout=10
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)

(三)个人总结

通过本次实验,让我熟悉了RYU控制器实现软件定义的集线器和交换机原理。在进阶内容中使用OpenFlow=10是会报错,需要使用OpenFlow=13进行解决。拓扑pingall会无法实现,经过查询需要关掉拓扑,启动L2Switch模块后再创建拓扑从而解决。

标签:控制器,self,parser,datapath,msg,开源,ofproto,RYU,port
From: https://www.cnblogs.com/daichenxuan/p/16838174.html

相关文章

  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的1.能够独立部署RYU控制器;2.能够理解RYU控制器实现软件定义的集线器原理;3.能够理解RYU控制器实现软件定义的交换机原理。二、......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境......
  • 实验6:开源控制器实践——RYU
    一、实验目的1、能够独立部署RYU控制器;2、能够理解RYU控制器实现软件定义的集线器原理;3、能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Des......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境......
  • 实验6:开源控制器实践——RYU
    1、搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。sudomn--topo=single,3--mac--controller=remote,ip=127.0.0.1,port=6......
  • 实验6:开源控制器实践——RYU
    一、实验目的1.能够独立部署RYU控制器;2.能够理解RYU控制器实现软件定义的集线器原理。3.能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Desk......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1.搭建所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。构建拓扑sudomn--topo=single,3--mac--controller=remote,ip......