首页 > 其他分享 >DAY49 ||1143.最长公共子序列| 1035.不相交的线 | 53. 最大子序和 |392.判断子序列

DAY49 ||1143.最长公共子序列| 1035.不相交的线 | 53. 最大子序和 |392.判断子序列

时间:2024-10-31 16:17:37浏览次数:3  
标签:1143 nums text2 字符串 text1 序列 子序 dp

1143.最长公共子序列

题目:1143. 最长公共子序列 - 力扣(LeetCode)

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

递推方向有三个。

 

 代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>>dp(text1.size()+1,vector<int>(text2.size()+1,0));

        for(int i=1;i<=text1.size();i++)
        {
            for(int j=1;j<=text2.size();j++)
            {
                if(text1[i-1]==text2[j-1])//从下标1开始,所以要减一,范围要等于数组长度。
                dp[i][j]=dp[i-1][j-1]+1;
                else
                dp[i][j]=max(dp[i][j-1],dp[i-1][j]);//不相等则取另外两个方向的最大值
            }
        }
        return dp[text1.size()][text2.size()];
        
    }
};

1035.不相交的线

1035. 不相交的线 - 力扣(LeetCode)

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1:

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。 
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

本题和上一题其实是一样的。求不相交的线的数量其实就是求最长公共子序列的长度。 

绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!

直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。

代码

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>>dp(nums1.size()+1,vector<int>(nums2.size()+1,0));

        for(int i=1;i<=nums1.size();i++)
        {
            for(int j=1;j<=nums2.size();j++)
            {
                if(nums1[i-1]==nums2[j-1])
                dp[i][j]=dp[i-1][j-1]+1;
                else
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        return dp[nums1.size()][nums2.size()];
        
    }
};

53. 最大子序和

53. 最大子数组和 - 力扣(LeetCode)

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组

是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

 

 代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size()==0)return 0;
        vector<int>dp(nums.size());
        dp[0]=nums[0];
        int result=dp[0];

        for(int i=1;i<nums.size();i++)
        {
            dp[i]=max(dp[i-1]+nums[i],nums[i]);
            if(dp[i]>result)result=dp[i];

        }
        return result;

    }
};

392.判断子序列

392. 判断子序列 - 力扣(LeetCode)

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:

  • 输入:s = "abc", t = "ahbgdc"
  • 输出:true

示例 2:

  • 输入:s = "axc", t = "ahbgdc"
  • 输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4

两个字符串都只由小写字符组成。

思路

好熟悉的题,好像之前做过,并且双指针法更好做吧。

1.dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。(定义和上面的题也没上面区别)

2.递推公式

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配
  • 如果不等,t就要删除元素。即dp[i][j] = dp[i][j - 1];

初始化初始为0就行了。方向是从小到大。

代码

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>>dp(s.size()+1,vector<int>(t.size()+1,0));

        for(int i=1;i<=s.size();i++)
        {
            for(int j=1;j<=t.size();j++)
            {
                if(s[i-1]==t[j-1])
                dp[i][j]=dp[i-1][j-1]+1;//当字符匹配: 如果 s[i-1] 和 t[j-1] 相同,那么我们可以将其纳入子序列,此时的最长公共子序列长度等于去掉这两个字符后的结果长度加一。
                else dp[i][j]=dp[i][j-1];//当字符不匹配: 如果不匹配,则我们只能考虑不包括 t[j-1] 的情况,即保持 s 的当前状态并尝试下一个 t 的字符。
            }
        }
        if(dp[s.size()][t.size()]==s.size())return true;

        return false;


        
    }
};

标签:1143,nums,text2,字符串,text1,序列,子序,dp
From: https://blog.csdn.net/2301_79865280/article/details/143397952

相关文章

  • DAY48|| 300.最长递增子序列 | 674. 最长连续递增序列 | 718. 最长重复子数组
     300.最长递增子序列300.最长递增子序列-力扣(LeetCode)给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例......
  • 【时间序列分析】平稳时间序列分析——Wold分解定理和延迟算子
    Wold分解定理(这个定理是平稳时间序列分析的理论基石。)对于任意一个离散平稳时间序列,它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的(deterministic),另一个为随机性的(stochastic) xₜ=Vₜ+ξₜ,{V₁}为确定性平稳序列,ξ₁为随机性平稳序列式中:确定性......
  • Leetcode刷题Python之3165.不包含相邻元素的子序列的最大和
    提示:利用线段树解决不包含相邻元素的子序列最大和问题。文章目录一、题目描述示例二、解题思路1.思路分析2.线段树的状态设计3.线段树的操作三、代码实现代码详细解释四、总结时间复杂度分析一、题目描述给定一个整数数组nums和一个二维数组queries,其中q......
  • 计量经济学(十五)的理论基础——时间序列分解定理
    时间序列分析是数据科学中的一个重要分支,旨在探索和理解随着时间变化的数据背后的模式和结构。无论是在金融市场预测、经济政策分析、环境监测还是医学研究中,时间序列数据的广泛应用证明了其在预测未来趋势、制定决策和风险管理方面的重要性。然而,时间序列数据的复杂性和多样性使......
  • BasicTS: 探索多元时间序列预测的进展: 综合基准和异质性分析(综述、长序列预测、时空
    2024年10月29日,在读一篇长序列预测&时空预测的综述的博客,记录一下自己需要的内容。原博客链接:「万字长文」长序列预测&时空预测,你是否被这些问题困扰过?一文带你探索多元时间序列预测的研究进展!论文:ExploringProgressinMultivariateTimeSeriesForecasting:Comprehensive......
  • 时间序列预测---Prophet
    更多细节可见官网地址:https://facebook.github.io/prophet/docs/quick_start.html#python-api一、模型介绍Prophet是facebook开源的的一个时间序列预测算法,特别适合于处理具有季节性和趋势的数据。主要思想是将数据分解为如下三个部分:趋势、季节性、节假日和特殊事件。y......
  • 时间序列分析:一种二次指数平滑法构建的纺织生产布料年产量线性预测模型 | 基于SQL语言
    目录0问题描述1 符号规定与基本假设 2模型的分析与建立 3模型的求解【基于SQL语言实现】3.1数据准备3.2问题分析步骤1:计算初始值。步骤2:计算一次平滑值。步骤3:计算二次平滑值 步骤4:计算直线趋势模型的系数 及步骤5:构建线性预测模型进行结果预测3.3结......
  • ISSA+CNN+BIGRU+attention时间序列预测代码
    1.ISSA(改进的麻雀优化算法)功能:ISSA用于优化模型参数(如CNN和BIGRU的超参数),帮助提高模型的性能和准确性。机制:寻食策略:模拟麻雀在觅食过程中如何探索和利用资源,通过随机游走和局部搜索,寻找最优解。自适应权重:ISSA可以根据搜索空间动态调整探索和利用的权重......
  • Fastjson枚举序列化和反序列化的推荐实现
    一、背景项目中定义了很多dto,包含枚举类型,而且这些枚举全都自定义标志码。比如7001对应某种操作。返回前台时,需要转化为对应的7001,前台传入后台时也希望7001转化为枚举。二、研究思路一开始,研究了fastjson的默认实现。发现只有不自定义类似7001这种默认值的时候,可以自动转化......
  • 基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据
    时间序列数据表示了一个随时间记录的值的序列。理解这些序列内部的关系,尤其是在多元或复杂的时间序列数据中,不仅仅局限于随时间绘制数据点(这并不是说这种做法不好)。通过将时间序列数据转换为图,我们可以揭示数据片段内部隐藏的连接、模式和关系,帮助我们发现平稳性和时间连通......