首页 > 其他分享 >BLOG-2

BLOG-2

时间:2022-10-29 10:34:57浏览次数:80  
标签:p2 p1 return Point Double BLOG Line

Java博客作业(二)

一、前言

<1>第四次大作业

题型总结:正则表达式的使用、凸四边形的计算、银行业务

涉及知识点:正则表达式的理解和应用、Java基本的语法和面向对象的一系列操作,父类和子类的关系以及对多边形切割的理解。

题量:较多。

难度:较大。

 

<2>第五次大作业

题型总结:点线形系列5-凸五边形的计算

涉及知识点:正则表达式的理解和应用、Java基本的语法和面向对象的一系列操作,父类和子类的关系,对多边形切割的理解,以及两个多边形存在关系的理解和判断。

题量:适中。

难度:较大。

 

<3>期中考试

题型总结:点和面、点线面问题重构、点线面问题再重构

涉及知识点:Java基本的语法和面向对象的一系列操作,继承和多态、抽象方法、类的重构、ArrayList的使用、容器的使用。

题量:适中。

难度:适中。

二、设计与分析

1.算法设计以及思路

<1>第四次作业第二题

  • 用户输入一组选项和数据,进行与四边形有关的计算。
  • 以下四边形顶点的坐标要求按顺序依次输入,连续输入的两个顶点是相邻顶点,第一个和最后一个输入的顶点相邻。
    选项包括:
    1:输入四个点坐标,判断是否是四边形、平行四边形,判断结果输出true/false,结果之间以一个英文空格符分隔。
    2:输入四个点坐标,判断是否是菱形、矩形、正方形,判断结果输出true/false,结果之间以一个英文空格符分隔。 若四个点坐标无法构成四边形,输出"not a quadrilateral"
    3:输入四个点坐标,判断是凹四边形(false)还是凸四边形(true),输出四边形周长、面积,结果之间以一个英文空格符分隔。 若四个点坐标无法构成四边形,输出"not a quadrilateral"
    4:输入六个点坐标,前两个点构成一条直线,后四个点构成一个四边形或三角形,输出直线与四边形(也可能是三角形)相交的交点数量。如果交点有两个,再按面积从小到大输出四边形(或三角形)被直线分割成两部分的面积(不换行)。若直线与四边形或三角形的一条边线重合,输出"The line is coincide with one of the lines"。若后四个点不符合四边形或三角形的输入,输出"not a quadrilateral or triangle"。
    后四个点构成三角形的情况:假设三角形一条边上两个端点分别是x、y,边线中间有一点z,另一顶点s:
    1)符合要求的输入:顶点重复或者z与xy都相邻,如x x y s、x z y s、x y x s、s x y y。此时去除冗余点,保留一个x、一个y。
    2) 不符合要求的输入:z 不与xy都相邻,如z x y s、x z s y、x s z y
    5:输入五个点坐标,输出第一个是否在后四个点所构成的四边形(限定为凸四边形,不考虑凹四边形)或三角形(判定方法见选项4)的内部(若是四边形输出in the quadrilateral/outof the quadrilateral,若是三角形输出in the triangle/outof the triangle)。如果点在多边形的某条边上,输出"on the triangle或者on the quadrilateral"。若后四个点不符合四边形或三角形,输出"not a quadrilateral or triangle"。

    输入格式:

    基本格式:选项+":"+坐标x+","+坐标y+" "+坐标x+","+坐标y。点的x、y坐标之间以英文","分隔,点与点之间以一个英文空格分隔。

    输出格式:

    基本输出格式见每种选项的描述。
    异常情况输出:
    如果不符合基本格式,输出"Wrong Format"。
    如果符合基本格式,但输入点的数量不符合要求,输出"wrong number of points"。
    注意:输出的数据若小数点后超过3位,只保留小数点后3位,多余部分采用四舍五入规则进到最低位。小数点后若不足3位,按原始位数显示,不必补齐。例如:1/3的结果按格式输出为 0.333,1.0按格式输出为1.0

    选项1、2、3中,若四边形四个点中有重合点,输出"points coincide"。
    选项4中,若前两个输入线的点重合,输出"points coincide"。

 大概思路:

首先通过两点不能重合以及不相邻边不能交叉的性质来判断输入的四个点是否能构成四边形,然后通过四边形所拥有的性质去解决后面的问题,最后先解决四边形切割问题再解决四个点构成三角形的情况。

平行四边形:四边形的对边平行且相等(一定要是对边)

矩形:平行四边形的两条邻边相互垂直。

菱形:平行四边形的四条边相等。

正方形:菱形的对角线长度相等

 

  1 import java.util.Objects;
  2 import java.util.Scanner;
  3 import java.math.BigDecimal;
  4 import java.math.RoundingMode;
  5 public class Main {
  6     public static Point getIntersectPoint(Point p1, Point p2, Point p3, Point p4){
  7 
  8         double A1=p1.y-p2.y;
  9         double B1=p2.x-p1.x;
 10         double C1=A1*p1.x+B1*p1.y;
 11 
 12         double A2=p3.y-p4.y;
 13         double B2=p4.x-p3.x;
 14         double C2=A2*p3.x+B2*p3.y;
 15 
 16         double det_k=A1*B2-A2*B1;
 17 
 18        if(Math.abs(det_k)<0.00001){
 19            return null;
 20        }
 21 
 22         double a=B2/det_k;
 23         double b=-1*B1/det_k;
 24         double c=-1*A2/det_k;
 25         double d=A1/det_k;
 26 
 27         double x=a*C1+b*C2;
 28         double y=c*C1+d*C2;
 29 
 30         return  new Point(x,y);
 31     }
 32     public static Double output(Double data)
 33     {
 34         double a = data;
 35 
 36         BigDecimal bigDecimal = new BigDecimal(a);
 37         double res = bigDecimal.setScale(3, RoundingMode.HALF_UP).doubleValue();
 38         return res;
 39     }
 40     static void operate_4(Point e,Point f, Point a, Point b, Point c, Point d)
 41     {
 42         Line ab = new Line(a, b);
 43         Line bc = new Line(b, c);
 44         Line cd = new Line(c, d);
 45         Line ad = new Line(a, d);
 46         Line ef=new Line(e,f);
 47         Line ac=new Line(a,c);
 48         Line bd=new Line(b,d);
 49         if(a.is_sibianxing(a,b,c,d)) {
 50             Quadrangle A=new Quadrangle(a,b,c,d);
 51             A.qiege_sibianxing(e,f,a,b,c,d);
 52         }
 53         else if (a.Same(b)||b.Same(c)||c.Same(d)||a.Same(d)||a.Same(c)||b.Same(d)||a.on_line(b,d)||b.on_line(a,c)||c.on_line(b,d)||d.on_line(a,c)) {
 54               if(a.Same(b)&&a.is_Triangle(a,c,d))
 55               {
 56                   Triangle A=new Triangle(a,c,d);
 57                   A.qiege_Triangle(ef,a,c,d);
 58               }
 59               else if(a.Same(c)&&a.is_Triangle(a,b,d))
 60               {
 61                   Triangle A=new Triangle(a,b,d);
 62                   A.qiege_Triangle(ef,a,b,d);
 63               }
 64               else if(b.Same(d)&&a.is_Triangle(a,b,c))
 65               {
 66                   Triangle A=new Triangle(a,b,c);
 67                   A.qiege_Triangle(ef,a,b,c);
 68               }
 69               else if(b.Same(c)&&a.is_Triangle(a,b,d))
 70               {
 71                   Triangle A=new Triangle(a,b,d);
 72                   A.qiege_Triangle(ef,a,b,d);
 73               }
 74               else if(c.Same(d)&&a.is_Triangle(a,b,c))
 75               {
 76                   Triangle A=new Triangle(a,b,c);
 77                   A.qiege_Triangle(ef,a,b,c);
 78               }
 79               else if(a.Same(d)&&a.is_Triangle(a,b,c))
 80               {
 81                   Triangle A=new Triangle(a,b,c);
 82                   A.qiege_Triangle(ef,a,b,c);
 83               }
 84               else if(a.on_line(b,d)&&a.is_Triangle(b,c,d)){
 85                   Triangle A=new Triangle(b,c,d);
 86                   A.qiege_Triangle(ef,b,c,d);
 87               }
 88               else if(b.on_line(a,c)&&a.is_Triangle(a,c,d)){
 89                   Triangle A=new Triangle(a,c,d);
 90                   A.qiege_Triangle(ef,a,c,d);
 91               }
 92               else if(c.on_line(b,d)&&a.is_Triangle(a,b,d)){
 93                   Triangle A=new Triangle(a,b,d);
 94                   A.qiege_Triangle(ef,a,b,d);
 95               }
 96               else if(d.on_line(a,c)&&a.is_Triangle(a,b,c)){
 97                   Triangle A=new Triangle(a,b,c);
 98                   A.qiege_Triangle(ef,a,b,c);
 99               }
100                   System.out.print("1");
101                   System.exit(0);
102         }
103         else{
104             System.out.print("not a quadrilateral or triangle");
105             System.exit(0);
106         }
107     }
108      static void operate_5(Point e, Point a, Point b, Point c, Point d)
109     {
110         if(a.is_sibianxing(a,b,c,d))
111         {
112             Line ab=new Line(a,b);
113             Line bc=new Line(b,c);
114             Line cd=new Line(c,d);
115             Line ad=new Line(a,d);
116             Quadrangle A=new Quadrangle(ab,bc,cd,ad);
117             if(e.on_line(a,b)||e.on_line(b,c)||e.on_line(c,d)||e.on_line(a,d))
118             {
119                 System.out.print("on the quadrilateral");
120                 System.exit(0);
121             }
122             else if(A.in_it(e,a,b,c,d))
123             {
124                 System.out.print("in the quadrilateral");
125                 System.exit(0);
126             }
127             else{
128                 System.out.print("outof the quadrilateral");
129                 System.exit(0);
130             }
131         }
132         else if (a.Same(b)||b.Same(c)||c.Same(d)||a.Same(d)||a.on_line(b,d)||b.on_line(a,c)||c.on_line(b,d)||d.on_line(a,c)) {
133             if(e.on_line(a,b)||e.on_line(b,c)||e.on_line(c,d)||e.on_line(a,d))
134             {
135                 System.out.print("on the triangle");
136                 System.exit(0);
137             }
138             System.out.print("in the triangle");
139             System.exit(0);
140         }
141         else{
142             System.out.print("not a quadrilateral or triangle");
143             System.exit(0);
144         }
145     }
146     public static void main(String[] args) {
147         Scanner in = new Scanner(System.in);
148         String input = in.nextLine();
149         if(!input.matches("^[1-5][:](([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))[,]([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))\\s?)+$"))
150         {
151             System.out.println("Wrong Format");
152             return;
153         }
154         String[] option =input.split(":");
155         String shuju=option[1];
156         String[] point = shuju.split(" ");
157         String[] num = null;
158         switch(option[0])
159         {
160             case "1":
161                 if(point.length!=4) {
162                     System.out.print("wrong number of points");
163                     System.exit(0);
164                 }
165                 num = point[0].split(",");
166                 Point a=new Point(num[0],num[1]);
167                 num = point[1].split(",");
168                 Point b=new Point(num[0],num[1]);
169                 num = point[2].split(",");
170                 Point c=new Point(num[0],num[1]);
171                 num = point[3].split(",");
172                 Point d=new Point(num[0], num[1]);
173                 if(a.Same(b)||b.Same(c)||c.Same(d)||d.Same(a)) {
174                     System.out.print("points coincide");
175                     return;
176                 }
177                 System.out.print(a.is_sibianxing(a,b,c,d));
178                 System.out.print(" ");
179                 Line ab=new Line(a,b);
180                 Line bc=new Line(b,c);
181                 Line cd=new Line(c,d);
182                 Line ad=new Line(a,d);
183                 Quadrangle A=new Quadrangle(ab,bc,cd,ad);
184                 System.out.print(A.is_px_sibianxing());
185                 break;
186            case "2":
187                 if(point.length!=4) {
188                     System.out.print("wrong number of points");
189                     System.exit(0);
190                 }
191                 num = point[0].split(",");
192                 a=new Point(num[0],num[1]);
193                 num = point[1].split(",");
194                 b=new Point(num[0],num[1]);
195                 num = point[2].split(",");
196                 c=new Point(num[0],num[1]);
197                 num = point[3].split(",");
198                 d=new Point(num[0], num[1]);
199                 if(!a.is_sibianxing(a,b,c,d))
200                 {
201                     System.out.print("not a quadrilateral");
202                     System.exit(0);
203                 }
204                 if(a.Same(b)||b.Same(c)||c.Same(d)||d.Same(a)||a.Same(c)||b.Same(d)) {
205                     System.out.print("points coincide");
206                     System.exit(0);
207                 }
208                 ab=new Line(a,b);
209                 bc=new Line(b,c);
210                 cd=new Line(c,d);
211                 ad=new Line(a,d);
212                 A=new Quadrangle(ab,bc,cd,ad);
213                 System.out.print(A.is_lx_sibianxing()+" "+A.is_jx_sibianxing()+" "+A.is_zf_sibianxing());
214                 break;
215            case "3":
216                 if(point.length!=4) {
217                     System.out.print("wrong number of points");
218                     System.exit(0);
219                 }
220                 num = point[0].split(",");
221                 a=new Point(num[0],num[1]);
222                 num = point[1].split(",");
223                 b=new Point(num[0],num[1]);
224                 num = point[2].split(",");
225                 c=new Point(num[0],num[1]);
226                 num = point[3].split(",");
227                 d=new Point(num[0], num[1]);
228                 if(a.Same(b)||b.Same(c)||c.Same(d)||d.Same(a)) {
229                     System.out.print("points coincide");
230                     System.exit(0);
231                 }
232                 if(!a.is_sibianxing(a,b,c,d))
233                 {
234                     System.out.print("not a quadrilateral");
235                     System.exit(0);
236                 }
237                 ab=new Line(a,b);
238                 bc=new Line(b,c);
239                 cd=new Line(c,d);
240                 ad=new Line(a,d);
241                 Line ac=new Line(a,c);
242                 Line bd=new Line(b,d);
243                 A=new Quadrangle(a,b,c,d);
244                 System.out.print(A.tu_sibianxing(a,b,c,d)+" "+output(A.get_zc())+" "+output(A.get_area()));
245                 break;
246             case "4":
247                 if(point.length!=6) {
248                     System.out.print("wrong number of points");
249                     System.exit(0);
250                 }
251                 num = point[0].split(",");
252                 Point e=new Point(num[0],num[1]);
253                 num = point[1].split(",");
254                 Point f=new Point(num[0],num[1]);
255                 num = point[2].split(",");
256                 a=new Point(num[0],num[1]);
257                 num = point[3].split(",");
258                 b=new Point(num[0], num[1]);
259                 num = point[4].split(",");
260                 c=new Point(num[0],num[1]);
261                 num = point[5].split(",");
262                 d=new Point(num[0], num[1]);
263                 if(e.Same(f)) {
264                     System.out.print("points coincide");
265                     System.exit(0);
266                 }
267                 operate_4(e,f,a,b,c,d);
268                 break;
269            case "5":
270                 if(point.length!=5) {
271                     System.out.print("wrong number of points");
272                     System.exit(0);
273                 }
274                 num = point[0].split(",");
275                 e=new Point(num[0],num[1]);
276                 num = point[1].split(",");
277                 a=new Point(num[0],num[1]);
278                 num = point[2].split(",");
279                 b=new Point(num[0],num[1]);
280                 num = point[3].split(",");
281                 c=new Point(num[0], num[1]);
282                 num = point[4].split(",");
283                 d=new Point(num[0],num[1]);
284                 operate_5(e,a,b,c,d);
285                 break;
286             default:System.out.print("Wrong Format");
287                 break;
288         }
289 
290     }
291 }
292 class Point {
293     double x,y,distance;
294      Point(String x,String y)
295     {
296         this.x=Double.valueOf(x);
297         this.y=Double.valueOf(y);
298     }
299     Point(Double x,Double y)
300     {
301         this.x=x;
302         this.y=y;
303     }
304      boolean Same(Point b) {//判断两点是否重合
305         if (Math.abs(this.x-b.x)<0.001 && Math.abs(this.y - b.y)<0.001)
306             return true;
307         else
308             return false;
309     }
310      Double Distance(Point b)//计算两点间的距离
311     {
312         distance=Math.sqrt((this.x-b.x)*(this.x-b.x)+(this.y-b.y)*(this.y-b.y));
313         return distance;
314     }
315      double Xielv(Point b)//计算两点所构成直线的斜率
316     {
317         double xielv=(b.y-this.y)/(b.x-this.x);
318         return xielv;
319     }
320      void Output(Point b)
321     {
322         if(this.Same(b)){
323             System.out.print("points coincide");
324             return;
325         }
326         else if(this.x==b.x)
327         {
328             System.out.print("Slope does not exist");
329             return;
330         }
331         else
332         {
333             System.out.print(this.Xielv(b));
334             return;
335         }
336     }
337      Double Czdistance(Point b,Point c)//计算点到直线的垂直距离
338     {
339         Double L = Math.abs((b.y-c.y)*this.x+(c.x-b.x)*this.y+b.x*c.y-c.y*c.x)/Math.sqrt((b.y-c.y) *(b.y-c.y) +(b.x-c.x)*(b.x-c.x));
340         return L;
341     }
342      boolean straight_line(Point b,Point c)//判断三个点是否在一条直线上
343     {
344         if(this.Xielv(b)==this.Xielv(c))
345             return true;
346         else
347             return false;
348     }
349     boolean is_sibianxing(Point a,Point b,Point c,Point d)
350     {
351         Line ab=new Line(a,b);
352         Line bc=new Line(b,c);
353         Line cd=new Line(c,d);
354         Line ad=new Line(a,d);
355         if(ab.parallel(bc)||ab.parallel(ad)||bc.parallel(cd)||cd.parallel(ad)||ab.xiangjiao(ab,cd)||bc.xiangjiao(bc,ad))
356             return false;
357         else return true;
358     }
359     boolean on_line(Point a,Point b)
360     {
361         return Math.abs(this.Distance(a)+this.Distance(b)-a.Distance(b))<=0.001;
362     }
363     Double getarea(Point a,Point b,Point c)
364     {
365         Double C=a.Distance(b)+a.Distance(c)+b.Distance(c);
366         Double s=C/2;
367         Double area=Math.sqrt((s * a.Distance(b) *a.Distance(c) * b.Distance(c)));
368         return area;
369     }
370      boolean is_Triangle(Point a,Point b,Point c)
371     {
372         if(a.Same(b)||b.Same(c)||a.Same(c)||a.straight_line(b,c))
373             return false;
374         else
375             return true;
376     }
377 
378 }
379 
380  class Line {
381     //    Double A,B,C;
382     Point p1,p2;
383     Double length;
384 
385      Line(Point a,Point b)
386     {
387         this.p1=a;
388         this.p2=b;
389         this.length=a.Distance(b);
390 //        this.A=b.y-a.y;
391 //        this.B=a.x-b.x;
392 //        this.C=this.A*a.x+this.B*a.y;
393     }
394      boolean parallel_x()//判断直线是否平行x轴
395     {
396         if(this.p1.y==this.p2.y)
397             return true;
398         else
399             return false;
400     }
401      boolean parallel_y()//判断直线是否平行y轴
402     {
403         if(this.p1.x==this.p2.x)
404             return true;
405         else
406             return false;
407     }
408       Double getXielv()//计算直线的斜率
409     {
410         if(this.parallel_y())
411             return null;
412         else if(this.parallel_x())
413         {
414             double xielv=0;
415             return xielv;
416         }
417         else
418             return (this.p1.y-this.p2.y)/(this.p1.x-this.p2.x);
419 
420     }
421      boolean parallel(Line p)//判断两条直线是否平行
422     {
423         if(this.parallel_x()&&p.parallel_x())
424             return true;
425         else if(this.parallel_y()&&p.parallel_y())
426             return true;
427         else if(Objects.equals(p.getXielv(), this.getXielv()))
428             return true;
429         else
430             return false;
431     }
432      boolean isin_line(Point a)
433     {
434         if(Math.abs(a.Czdistance(this.p1,this.p2))<0.001)
435             return true;
436         else
437             return false;
438     }
439      Point getjiaodian(Line q)
440     {
441 //        y=kx+b
442         Point c=new Point(1.0, 1.0);
443         Double k1,b1,k2,b2;
444         if(this.parallel_x()&&q.parallel_y())
445         {
446             b1=this.p1.y;
447             b2=q.p1.x;
448             c.x=b2;
449             c.y=b1;
450             return c;
451         }
452         else if(this.parallel_y()&&!q.parallel_x()) {
453             k2=q.getXielv();
454             b2=q.p1.y-q.p1.x*k2;
455             c.x = this.p1.x;
456             c.y = c.x*k2+b2;
457             return c;
458         }
459         else if(q.parallel_y()&&!this.parallel_x()) {
460             k1 = this.getXielv();
461             b1 = this.p1.y - this.p1.x * k1;
462             c.x = q.p1.x;
463             c.y = c.x*k1+b1;
464             return c;
465         }
466         else if(q.parallel_x()&&this.parallel_y())
467         {
468             b2=q.p1.y;
469             b1=this.p1.x;
470             c.x=b1;
471             c.y=b2;
472             return c;
473         }
474         else if(this.parallel_x()&&!q.parallel_y())
475         {
476             b1=this.p1.y;
477             k2=q.getXielv();
478             b2=q.p1.y-q.p1.x*k2;
479             c.y=b1;
480             c.x=(b1-b2)/k2;
481             return c;
482         }
483         else if(q.parallel_x()&&!this.parallel_y())
484         {
485             b2=this.p1.y;
486             k1=this.getXielv();
487             b1=this.p1.y-this.p1.x*k1;
488             c.y=b2;
489             c.x=(b2-b1)/k1;
490             return c;
491         }
492         else{
493             k1 = this.getXielv();
494             b1 = this.p1.y - this.p1.x * k1;
495             k2 = q.getXielv();
496             b2 = q.p1.y - q.p1.x * k2;
497             c.x = (b2 - b1) / (k1 - k2);
498             c.y = k1 * c.x + b1;
499             return c;
500         }
501 
502     }
503 
504      boolean init(Double x,Double y,Line q)//判断交点是否在两条线段内
505     {
506         if((y<=Math.max(this.p1.y,this.p2.y)||y<=Math.max(q.p1.y,q.p2.y))&&((y>=Math.min(this.p1.y,this.p2.y)||y>=Math.min(q.p1.y,q.p2.y))))
507         {
508             return true;
509         }
510         else
511             return false;
512     }
513     Point get_zhongdian()
514     {
515         Double x=(this.p1.x+this.p2.x)/2;
516         Double y=(this.p1.y+this.p2.y)/2;
517         Point a=new Point(x,y);
518         return a;
519     }
520      boolean is_cz(Line p)
521     {
522          if(Math.abs((this.p2.x-this.p1.x)*(p.p2.x-p.p1.x)+(this.p2.y-this.p1.y)*(p.p2.y-p.p1.y))<0.01)
523             return true;
524         else return false;
525     }
526       boolean xiangjiao(Line p,Line q)
527     {
528         // 快速排斥实验 首先判断两条线段在 x 以及 y 坐标的投影是否有重合。 有一个为真,则代表两线段必不可交。
529         if (Math.max(p.p1.x,p.p2.x) < Math.min(q.p1.x ,q.p2.x)
530                 || Math.max(p.p1.y,p.p2.y) < Math.min(q.p1.y,q.p2.y)
531                 || Math.max(q.p1.x ,q.p2.x) < Math.min(p.p1.x,p.p2.x)
532                 || Math.max(q.p1.y,q.p2.y) < Math.min(p.p1.y,p.p2.y))
533         {
534             return false;
535         }
536         if ((((p.p1.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p1.y - q.p1.y ) * (q.p2.x - q.p1.x))
537                 * ((p.p2.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p2.y - q.p1.y) * (q.p2.x - q.p1.x))) > 0
538                 || (((q.p1.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p1.y - p.p1.y) * (p.p2.x - p.p1.x))
539                 * ((q.p2.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p2.y - p.p1.y) * (p.p2.x - p.p1.x))) > 0)
540         {
541             return false;
542         }
543 
544         return true;
545     }
546       boolean is_sameline(Line q)
547     {
548 //         return q.isin_line(this.p1) && q.isin_line(this.p2);
549       return this.p1.straight_line(q.p1,q.p2)&&this.p2.straight_line(q.p1,q.p2);
550       }
551      boolean xiangjiao2(Line q)
552     {
553         Double a1=(this.p1.x-q.p1.x)*(this.p2.y-q.p1.y)-(this.p1.y-q.p1.y)*(this.p2.x-q.p1.x);
554         Double a2=(this.p1.x-q.p2.x)*(this.p2.y-q.p2.y)-(this.p1.y-q.p2.y)*(this.p2.x-q.p2.x);
555         return (a1 >= 0 && a2 <= 0) || (a1 <= 0 && a2 >= 0);
556     }
557 
558 }
559  class Triangle {
560     Line l1, l2, l3;
561     Point a;Point b;Point c;
562 
563      Triangle(Line l1, Line l2, Line l3) {
564         this.l1 = l1;
565         this.l2 = l2;
566         this.l3 = l3;
567     }
568      Triangle(Point a,Point b,Point c) {
569         this.a=a;this.b=b;this.c=c;
570         Line ab = new Line(a, b);
571         Line bc = new Line(b, c);
572         Line ac = new Line(a, c);
573         this.l1 = ab;
574         this.l2 = bc;
575         this.l3 = ac;
576     }
577 
578      void whattriangle() {
579         boolean db = false;
580         boolean dy = false;
581         if (Objects.equals(this.l1.length, this.l2.length) && Objects.equals(this.l1.length, this.l3.length))
582             db = true;
583         else if (Objects.equals(this.l1.length, this.l2.length) || Objects.equals(this.l1.length, this.l3.length) || Objects.equals(this.l2.length, this.l3.length)) {
584             dy = true;
585         } else {
586             db = false;
587             dy = false;
588         }
589         if (db)
590             System.out.print("true true");
591         else if (dy)
592             System.out.print("true false");
593         else
594             System.out.print("false false");
595     }
596 
597      Double get_zc() {
598         return (this.l1.length + this.l2.length + this.l3.length);
599     }
600 
601      Double get_area() {
602         Double s = this.get_zc() / 2;
603         Double area=Math.sqrt((s * (s - this.l1.length) * (s - this.l2.length) * (s - this.l3.length)));
604         return area;
605     }
606 
607      Double get_zx_x() {
608         Double x1 = this.l1.p1.x;
609         Double x2 = this.l1.p2.x;
610         Double x3 = this.l2.p2.x;
611 
612         Double X1 = (x1 + x2 + x3) / 3;
613         return X1;
614     }
615      Double get_zx_y()
616     {
617         Double y1 = this.l1.p1.y;
618         Double y2 = this.l1.p2.y;
619         Double y3 = this.l2.p2.y;
620         Double Y1 = (y1 + y2 + y3) / 3;
621         return Y1;
622     }
623      void is_jiao()
624     {
625         if(Math.abs(Math.pow(this.l1.length,2)+Math.pow(this.l2.length,2)-Math.pow(this.l3.length,2))<0.0001||
626                 Math.abs(Math.pow(this.l1.length,2)+Math.pow(this.l3.length,2)-Math.pow(this.l2.length,2))<0.0001||
627                 Math.abs(Math.pow(this.l2.length,2)+Math.pow(this.l3.length,2)-Math.pow(this.l1.length,2))<0.0001)
628             System.out.print("false true false");
629         else if(Math.pow(this.l1.length,2)+Math.pow(this.l2.length,2)<Math.pow(this.l3.length,2)||
630                 Math.pow(this.l1.length,2)+Math.pow(this.l3.length,2)<Math.pow(this.l2.length,2)||
631                 Math.pow(this.l2.length,2)+Math.pow(this.l3.length,2)<Math.pow(this.l1.length,2))
632             System.out.print("true false false");
633         else
634             System.out.print("false false true");
635     }
636      boolean isinit(Line p,Line q)
637     {
638         if(p.init(Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).x,Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).y,q))
639             return true;
640         else
641             return false;
642     }
643      Double getarea2(Point a,Point b,Point c)
644     {
645         Line p=new Line(a,b);
646         Line q=new Line(a,c);
647         Line r=new Line(b,c);
648         Triangle A=new Triangle(p,q,r);
649         return A.get_area();
650     }
651      void operate5(Point a,Point b,Point c,Point d)
652     {
653         if(Math.abs(getarea2(a,b,c)+getarea2(a,b,d)+getarea2(a,c,d)-getarea2(b,c,d))<0.0001)
654             System.out.print("in the triangle");
655         else
656             System.out.print("out of the triangle");
657     }
658      void output(Double s1,Double s2)
659     {
660         if(s1<=s2){
661             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
662             System.exit(0);
663         }
664         else {
665             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
666             System.exit(0);
667         }
668     }
669     void qiege_Triangle(Line ef,Point a,Point c,Point d)
670     {
671         Triangle A=new Triangle(a,c,d);
672         Line ac=new Line(a,c);
673         Line cd=new Line(c,d);
674         Line ad=new Line(a,d);
675         if(ef.is_sameline(ac)||ef.is_sameline(cd)||ef.is_sameline(ad)){
676             System.out.print("The line is coincide with one of the lines");
677             System.exit(0);
678         }
679         else if((ef.isin_line(a)&&!ef.xiangjiao2(cd))||(ef.isin_line(c)&&!ef.xiangjiao2(ad))||(ef.isin_line(d)&&!ef.xiangjiao2(ac)))
680         {
681             System.out.print("1");
682             System.exit(0);
683         }
684         else if(ef.isin_line(a)&&ef.xiangjiao2(cd))
685         {
686             Triangle C=new Triangle(a,c,ef.getjiaodian(cd));
687             Triangle D=new Triangle(a,ef.getjiaodian(cd),d);
688             Double s1=C.get_area();
689             Double s2= D.get_area();
690             C.output(s1,s2);
691         }
692         else if(ef.isin_line(c)&&ef.xiangjiao2(ad)){
693             Triangle C=new Triangle(a,c,ef.getjiaodian(ad));
694             Triangle D=new Triangle(c,ef.getjiaodian(ad),d);
695             Double s1=C.get_area();
696             Double s2= D.get_area();
697             C.output(s1,s2);
698         }
699         else if(ef.isin_line(d)&&ef.xiangjiao2(ac)){
700             Triangle C=new Triangle(a,ef.getjiaodian(ac),d);
701             Triangle D=new Triangle(ef.getjiaodian(ac),c,d);
702             Double s1=C.get_area();
703             Double s2= D.get_area();
704             C.output(s1,s2);
705         }
706         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(cd)){
707             Triangle C=new Triangle(ef.getjiaodian(ac),c,ef.getjiaodian(cd));
708             Double s1=C.get_area();
709             Double s2=A.get_area()-s1;
710             C.output(s1,s2);
711         }
712         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(ad)){
713             Triangle C=new Triangle(a,ef.getjiaodian(ac),ef.getjiaodian(ad));
714             Double s1=C.get_area();
715             Double s2=A.get_area()-s1;
716             C.output(s1,s2);
717         }
718         else if(ef.xiangjiao2(ad)&& ef.xiangjiao2(cd)){
719             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
720             Double s1=C.get_area();
721             Double s2=A.get_area()-s1;
722             C.output(s1,s2);
723         }
724     }
725 
726 }
727 
728  class Quadrangle {
729     Line ab;
730     Line bc;
731     Line cd;
732     Line ad;
733     Point a;Point b;Point c;Point d;
734     Quadrangle(Line ab,Line bc,Line cd,Line ad)
735     {
736         this.ab=ab;
737         this.bc=bc;
738         this.cd=cd;
739         this.ad=ad;
740     }
741     Quadrangle(Point a,Point b,Point c,Point d)
742     {
743         this.a=a;this.b=b;this.c=c;this.d=d;
744         Line ab = new Line(a, b);
745         Line bc = new Line(b, c);
746         Line cd = new Line(c, d);
747         Line ad = new Line(a, d);
748         this.ab=ab;
749         this.bc=bc;
750         this.cd=cd;
751         this.ad=ad;
752     }
753     boolean is_px_sibianxing()
754     {
755         return this.ab.parallel(cd)&&this.bc.parallel(ad);
756     }
757      boolean is_zf_sibianxing()
758     {
759         return this.is_lx_sibianxing()&&(Objects.equals(this.ab.length, this.bc.length))&&this.ab.is_cz(bc);
760     }
761     boolean is_lx_sibianxing()
762     {
763         return this.is_px_sibianxing()&&Objects.equals(this.ab.length, this.bc.length);
764     }
765     boolean is_jx_sibianxing()
766     {
767         return this.is_px_sibianxing()&&this.ab.is_cz(bc);
768     }
769     void what_Quadrangle()
770     {
771         if(this.is_zf_sibianxing())
772             System.out.print("true true true");
773         else if(this.is_lx_sibianxing())
774             System.out.print("true false false");
775         else if(this.is_jx_sibianxing())
776             System.out.print("false true false");
777         else System.out.print("false false false");
778     }
779      boolean tu_sibianxing(Point p1,Point p2,Point p3,Point p4)
780     {
781         Double t1 = (p4.x-p1.x)*(p2.y-p1.y)-(p4.y-p1.y)*(p2.x-p1.x);
782         Double t2 = (p1.x-p2.x)*(p3.y-p2.y)-(p1.y-p2.y)*(p3.x-p2.x);
783         Double t3 = (p2.x-p3.x)*(p4.y-p3.y)-(p2.y-p3.y)*(p4.x-p3.x);
784         Double t4 = (p3.x-p4.x)*(p1.y-p4.y)-(p3.y-p4.y)*(p1.x-p4.x);
785         return t1*t2*t3*t4>=0;
786     }
787     Double get_zc()
788     {
789         return this.ab.length+this.bc.length+ad.length+this.cd.length;
790     }
791     Double get_area(Line ac,Line bd)
792     {
793         Triangle a=new Triangle(this.ab,this.bc,ac);
794         Triangle b=new Triangle(this.cd,this.ad,ac);
795         Triangle c=new Triangle(this.ab,this.ad,bd);
796         Triangle d=new Triangle(this.bc,this.cd,bd);
797         if(this.tu_sibianxing(this.ab.p1,this.ab.p2,this.cd.p1,this.cd.p2))
798             return c.get_area()+d.get_area();
799         else {
800             if (Objects.equals(c.get_area(), d.get_area()))
801                 return Math.abs(a.get_area() - b.get_area());
802             else
803                 return Math.abs(c.get_area() - d.get_area());
804         }
805     }
806      Double get_area()
807     {
808 //        s=1/2*[(x1*y2-x2*y1)+(x2*y3-x3*y2)+...... +(Xk*Yk+1-Xk+1*Yk)+...+(Xn*y1-x1*Yn) ]
809         double s=0;
810         s=(this.a.x*this.b.y-this.b.x*this.a.y)+(this.b.x*this.c.y-this.c.x*this.b.y)+(this.c.x*this.d.y-this.d.x*this.c.y)+(this.d.x*this.a.y-this.a.x*this.d.y);
811         return Math.abs(s/2);
812     }
813      boolean in_it(Point e,Point a,Point b,Point c,Point d)
814     {
815         Line ab=new Line(a,b);
816         Line bc=new Line(b,c);
817         Line cd=new Line(c,d);
818         Line ad=new Line(a,d);
819         Line ea=new Line(e,a);
820         Line eb=new Line(e,b);
821         Line ec=new Line(e,c);
822         Line ed=new Line(e,d);
823         Line ac=new Line(a,c);
824         Line bd=new Line(b,d);
825         Triangle A=new Triangle(ea,eb,ab);
826         Triangle B=new Triangle(eb,ec,bc);
827         Triangle C=new Triangle(ec,ed,cd);
828         Triangle D=new Triangle(ea,ed,ad);
829         if(Math.abs(A.get_area()+B.get_area()+C.get_area()+D.get_area()-this.get_area(ac,bd))<0.1)
830             return true;
831         else
832             return false;
833     }
834      void output(Double s1,Double s2)
835     {
836         if(s1<=s2){
837             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
838             System.exit(0);
839         }
840         else {
841             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
842             System.exit(0);
843         }
844     }
845      void qiege_sibianxing(Point e,Point f, Point a, Point b, Point c, Point d)
846     {
847         Line ab = new Line(a, b);
848         Line bc = new Line(b, c);
849         Line cd = new Line(c, d);
850         Line ad = new Line(a, d);
851         Line ef=new Line(e,f);
852         Line ac=new Line(a,c);
853         Line bd=new Line(b,d);
854         Quadrangle A=new Quadrangle(a,b,c,d);
855         if(ef.is_sameline(ab)||ef.is_sameline(bc)||ef.is_sameline(cd)||ef.is_sameline(ad)){
856             System.out.print("The line is coincide with one of the lines");
857             System.exit(0);
858         }
859         else if(ef.is_sameline(ac)){
860             Triangle C=new Triangle(ab,bc,ac);
861             Triangle D=new Triangle(cd,ad,ac);
862             Double s1=C.get_area();
863             Double s2= D.get_area();
864             C.output(s1,s2);
865         }
866         else if(ef.is_sameline(bd)){
867             Triangle C=new Triangle(ab,ad,bd);
868             Triangle D=new Triangle(bc,cd,bd);
869             Double s1=C.get_area();
870             Double s2= D.get_area();
871             C.output(s1,s2);
872         }
873         else if(ef.xiangjiao2(ab)&& ef.xiangjiao2(cd)){
874             Quadrangle C=new Quadrangle(a,ef.getjiaodian(ab),ef.getjiaodian(cd),d);
875             Quadrangle D=new Quadrangle(ef.getjiaodian(ab),b,c,ef.getjiaodian(cd));
876             Double s1=C.get_area();
877             Double s2= D.get_area();
878             C.output(s1,s2);
879         }
880         else if(ef.xiangjiao2(bc)&& ef.xiangjiao2(ad)){
881             Quadrangle C=new Quadrangle(a,b,ef.getjiaodian(bc),ef.getjiaodian(ad));
882             Quadrangle D=new Quadrangle(ef.getjiaodian(bc),c,d,ef.getjiaodian(ad));
883             Double s1=C.get_area();
884             Double s2= D.get_area();
885             C.output(s1,s2);
886         }
887         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(bc)){
888             Triangle C=new Triangle(ef.getjiaodian(ab),b,ef.getjiaodian(bc));
889             Double s1=C.get_area();
890             Double s2=Math.abs(A.get_area()- C.get_area());
891             C.output(s1,s2);
892         }
893         else if(ef.xiangjiao2(bc)&&ef.xiangjiao2(cd)){
894             Triangle C=new Triangle(ef.getjiaodian(bc),c,ef.getjiaodian(cd));
895             Double s1=C.get_area();
896             Double s2=Math.abs(A.get_area()- C.get_area());
897             C.output(s1,s2);
898         }
899         else if(ef.xiangjiao2(cd)&&ef.xiangjiao2(ad)){
900             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
901             Double s1=C.get_area();
902             Double s2=Math.abs(A.get_area()- C.get_area());
903             C.output(s1,s2);
904         }
905         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(ad)){
906             Triangle C=new Triangle(a,ef.getjiaodian(ab),ef.getjiaodian(ad));
907             Double s1=C.get_area();
908             Double s2=Math.abs(A.get_area()- C.get_area());
909             C.output(s1,s2);
910         }
911         else if(ef.isin_line(a)&&ef.xiangjiao2(bc)){
912             Triangle C=new Triangle(a,b,ef.getjiaodian(bc));
913             Double s1=C.get_area();
914             Double s2=Math.abs(A.get_area()- C.get_area());
915             C.output(s1,s2);
916         }
917         else if(ef.isin_line(a)&&ef.xiangjiao2(cd)){
918             Triangle C=new Triangle(a,ef.getjiaodian(cd),d);
919             Double s1=C.get_area();
920             Double s2=Math.abs(A.get_area()- C.get_area());
921             C.output(s1,s2);
922         }
923         else if(ef.isin_line(b)&&ef.xiangjiao2(cd)){
924             Triangle C=new Triangle(b,c,ef.getjiaodian(cd));
925             Double s1=C.get_area();
926             Double s2=Math.abs(A.get_area()- C.get_area());
927             C.output(s1,s2);
928         }
929         else if(ef.isin_line(b)&&ef.xiangjiao2(ad)){
930             Triangle C=new Triangle(a,b,ef.getjiaodian(ad));
931             Double s1=C.get_area();
932             Double s2=Math.abs(A.get_area()- C.get_area());
933             C.output(s1,s2);
934         }
935         else if(ef.isin_line(c)&&ef.xiangjiao2(ab)){
936             Triangle C=new Triangle(ef.getjiaodian(ab),b,c);
937             Double s1=C.get_area();
938             Double s2=Math.abs(A.get_area()- C.get_area());
939             C.output(s1,s2);
940         }
941         else if(ef.isin_line(c)&&ef.xiangjiao2(ad)){
942             Triangle C=new Triangle(c,d,ef.getjiaodian(ad));
943             Double s1=C.get_area();
944             Double s2=Math.abs(A.get_area()- C.get_area());
945             C.output(s1,s2);
946         }
947         else if(ef.isin_line(d)&&ef.xiangjiao2(bc)){
948             Triangle C=new Triangle(ef.getjiaodian(bc),c,d);
949             Double s1=C.get_area();
950             Double s2=Math.abs(A.get_area()- C.get_area());
951             C.output(s1,s2);
952         }
953         else if(ef.isin_line(d)&&ef.xiangjiao2(ab)){
954             Triangle C=new Triangle(a,ef.getjiaodian(ab),d);
955             Double s1=C.get_area();
956             Double s2=Math.abs(A.get_area()- C.get_area());
957             C.output(s1,s2);
958         }
959         else
960         {
961             System.out.print("1");
962             System.exit(0);
963         }
964     }
965 }
View Code

 

<2>第五次作业第一,二题

7-1 点线形系列5-凸五边形的计算-1

用户输入一组选项和数据,进行与五边形有关的计算。
以下五边形顶点的坐标要求按顺序依次输入,连续输入的两个顶点是相邻顶点,第一个和最后一个输入的顶点相邻。
选项包括:
1:输入五个点坐标,判断是否是五边形,判断结果输出true/false。
2:输入五个点坐标,判断是凹五边形(false)还是凸五边形(true),如果是凸五边形,则再输出五边形周长、面积,结果之间以一个英文空格符分隔。 若五个点坐标无法构成五边形,输出"not a pentagon"
3:输入七个点坐标,前两个点构成一条直线,后五个点构成一个凸五边形、凸四边形或凸三角形,输出直线与五边形、四边形或三角形相交的交点数量。如果交点有两个,再按面积从小到大输出被直线分割成两部分的面积(不换行)。若直线与多边形形的一条边线重合,输出"The line is coincide with one of the lines"。若后五个点不符合五边形输入,若前两点重合,输出"points coincide"。

7-2 点线形系列5-凸五边形的计算-2

4:输入十个点坐标,前、后五个点分别构成一个凸多边形(三角形、四边形、五边形),判断它们两个之间是否存在包含关系(一个多边形有一条或多条边与另一个多边形重合,其他部分都包含在另一个多边形内部,也算包含)。
两者存在六种关系:1、分离(完全无重合点) 2、连接(只有一个点或一条边重合) 3、完全重合 4、被包含(前一个多边形在后一个多边形的内部)5、交错 6、包含(后一个多边形在前一个多边形的内部)。
各种关系的输出格式如下:
1、no overlapping area between the previous triangle/quadrilateral/ pentagon and the following triangle/quadrilateral/ pentagon
2、the previous triangle/quadrilateral/ pentagon is connected to the following triangle/quadrilateral/ pentagon
3、the previous triangle/quadrilateral/ pentagon coincides with the following triangle/quadrilateral/ pentagon
4、the previous triangle/quadrilateral/ pentagon is inside the following triangle/quadrilateral/ pentagon
5、the previous triangle/quadrilateral/ pentagon is interlaced with the following triangle/quadrilateral/ pentagon
6、the previous triangle/quadrilateral/ pentagon contains the following triangle/quadrilateral/ pentagon

5:输入十个点坐标,前、后五个点分别构成一个凸多边形(三角形、四边形、五边形),输出两个多边形公共区域的面积。注:只考虑每个多边形被另一个多边形分割成最多两个部分的情况,不考虑一个多边形将另一个分割成超过两个区域的情况。
6:输入六个点坐标,输出第一个是否在后五个点所构成的多边形(限定为凸多边形,不考虑凹多边形),的内部(若是五边形输出in the pentagon/outof the pentagon,若是四边形输出in the quadrilateral/outof the quadrilateral,若是三角形输出in the triangle/outof the triangle)。输入入错存在冗余点要排除,冗余点的判定方法见选项5。如果点在多边形的某条边上,输出"on the triangle/on the quadrilateral/on the pentagon"。
以上4、5、6选项输入的五个点坐标可能存在冗余,假设多边形一条边上两个端点分别是x、y,边线中间有一点z,另一顶点s:
1)符合要求的输入:顶点重复或者z与xy都相邻,如:x x y s、x z y s、x y x s、s x y y。此时去除冗余点,保留一个x、一个y。
2) 不符合要求的输入:z不与xy都相邻,如:z x y s、x z s y、x s z y

输入格式:

基本格式:选项+":"+坐标x+","+坐标y+" "+坐标x+","+坐标y。点的x、y坐标之间以英文","分隔,点与点之间以一个英文空格分隔。

输出格式:        

基本输出格式见每种选项的描述。
异常情况输出:
如果不符合基本格式,输出"Wrong Format"。
如果符合基本格式,但输入点的数量不符合要求,输出"wrong number of points"。
注意:输出的数据若小数点后超过3位,只保留小数点后3位,多余部分采用四舍五入规则进到最低位。小数点后若不足3位,按原始位数显示,不必补齐。例如:1/3的结果按格式输出为 0.333,1.0按格式输出为1.0

因为这两题本身就是一个题目分开来写的,所以我就把这两个题目一起分析。

大概思路:

判断条件和前面判断四边形的大致一致,首先通过两点不能重合以及不相邻边不能交叉的性质来判断输入的五个点是否能构成五边形,然后通过五边形所拥有的性质去解决后面的问题,在判断输入的点构成的多边形的切割问题时,线把五边形的情况写完,再用else if去判断五个五点构成四边形的情况,最后再用else if去判断构成三角形的情况,再进行相应的计算。

第二题判断两个多边形关系的时候我是先写条件判断相离和完全重合的情况,再判断连接和包含的情况,最后就剩下交错的情况,否则会出现判断错误的情况。

第一题:

 

 

 

   1 import java.util.Scanner;
   2 import java.util.Objects;
   3 
   4 import java.math.BigDecimal;
   5 import java.math.RoundingMode;
   6 public class Main {
   7     public static Point getIntersectPoint(Point p1, Point p2, Point p3, Point p4){
   8 
   9         double A1=p1.y-p2.y;
  10         double B1=p2.x-p1.x;
  11         double C1=A1*p1.x+B1*p1.y;
  12 
  13         double A2=p3.y-p4.y;
  14         double B2=p4.x-p3.x;
  15         double C2=A2*p3.x+B2*p3.y;
  16 
  17         double det_k=A1*B2-A2*B1;
  18 
  19         if(Math.abs(det_k)<0.00001){
  20             return null;
  21         }
  22 
  23         double a=B2/det_k;
  24         double b=-1*B1/det_k;
  25         double c=-1*A2/det_k;
  26         double d=A1/det_k;
  27 
  28         double x=a*C1+b*C2;
  29         double y=c*C1+d*C2;
  30 
  31         return  new Point(x,y);
  32     }
  33     public static Double output(Double data)
  34     {
  35         double a = data;
  36 
  37         BigDecimal bigDecimal = new BigDecimal(a);
  38         double res = bigDecimal.setScale(3, RoundingMode.HALF_UP).doubleValue();
  39         return res;
  40     }
  41     static void operate_3(Point f,Point g,Point a,Point b,Point c,Point d,Point e)
  42     {
  43         if(a.is_pentagon(a,b,c,d,e))
  44         {
  45             Pentagon A=new Pentagon(a,b,c,d,e);
  46             A.qiege_pentagon(f,g,a,b,c,d,e);
  47         }
  48         else if(a.Same(b)||b.Same(c)||c.Same(d)||d.Same(e)||a.Same(e)||a.Same(c)||a.Same(d)||b.Same(d)||b.Same(e)||c.Same(e)||
  49                 a.on_line(b,e)||b.on_line(a,c)||c.on_line(b,d)||d.on_line(c,e)||e.on_line(a,d))
  50         {
  51             if((a.Same(b)||a.Same(c)||a.Same(d)||a.Same(e)||a.on_line(b,e))&&a.is_sibianxing(b,c,d,e))
  52             {
  53                 Quadrangle A=new Quadrangle(b,c,d,e);
  54                 A.qiege_sibianxing(f,g,b,c,d,e);
  55             }
  56             else if((b.Same(c)||b.Same(d)||b.Same(e)||b.on_line(a,c))&&a.is_sibianxing(a,c,d,e))
  57             {
  58                 Quadrangle A=new Quadrangle(a,c,d,e);
  59                 A.qiege_sibianxing(f,g,a,c,d,e);
  60             }
  61             else if((c.Same(d)||c.Same(e)||c.on_line(b,d))&&a.is_sibianxing(a,b,d,e))
  62             {
  63                 Quadrangle A=new Quadrangle(a,b,d,e);
  64                 A.qiege_sibianxing(f,g,a,b,d,e);
  65             }
  66             else if((d.Same(e)||d.on_line(c,e))&&a.is_sibianxing(a,b,c,e))
  67             {
  68                 Quadrangle A=new Quadrangle(a,b,c,e);
  69                 A.qiege_sibianxing(f,g,a,b,c,e);
  70             }
  71             else if(e.on_line(a,d)&&a.is_sibianxing(a,b,c,d))
  72             {
  73                 Quadrangle A=new Quadrangle(a,b,c,d);
  74                 A.qiege_sibianxing(f,g,a,b,c,d);
  75             }
  76             else if(((a.Same(b)&&a.Same(c))||(b.on_line(a,c)&&c.on_line(b,d)))&&a.is_Triangle(a,d,e))
  77             {
  78                 Triangle A=new Triangle(a,d,e);
  79                 A.qiege_Triangle(f,g,a,d,e);
  80             }
  81             else if((b.on_line(a,c)||d.on_line(c,e))&&a.is_Triangle(a,c,e))
  82             {
  83                 Triangle A=new Triangle(a,c,e);
  84                 A.qiege_Triangle(f,g,a,c,e);
  85             }
  86         }
  87         else
  88         {
  89             System.out.print("not a polygon");
  90         }
  91     }
  92 
  93     public static void main(String[] args) {
  94         Scanner in = new Scanner(System.in);
  95         String input = in.nextLine();
  96         if(!input.matches("^[1-5][:](([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))[,]([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))\\s?)+$"))
  97         {
  98             System.out.println("Wrong Format");
  99             return;
 100         }
 101         String[] option =input.split(":");
 102         String shuju=option[1];
 103         String[] point = shuju.split(" ");
 104         String[] num = null;
 105         switch(option[0])
 106         {
 107             case "1":
 108                 if(point.length!=5) {
 109                     System.out.print("wrong number of points");
 110                     System.exit(0);
 111                 }
 112                 num = point[0].split(",");
 113                 Point a=new Point(num[0],num[1]);
 114                 num = point[1].split(",");
 115                 Point b=new Point(num[0],num[1]);
 116                 num = point[2].split(",");
 117                 Point c=new Point(num[0],num[1]);
 118                 num = point[3].split(",");
 119                 Point d=new Point(num[0],num[1]);
 120                 num = point[4].split(",");
 121                 Point e=new Point(num[0],num[1]);
 122                 System.out.print(a.is_pentagon(a,b,c,d,e));
 123                 break;
 124             case "2":
 125                 if(point.length!=5) {
 126                     System.out.print("wrong number of points");
 127                     System.exit(0);
 128                 }
 129                 num = point[0].split(",");
 130                 a=new Point(num[0],num[1]);
 131                 num = point[1].split(",");
 132                 b=new Point(num[0],num[1]);
 133                 num = point[2].split(",");
 134                 c=new Point(num[0],num[1]);
 135                 num = point[3].split(",");
 136                 d=new Point(num[0], num[1]);
 137                 num = point[4].split(",");
 138                 e=new Point(num[0],num[1]);
 139                 if(!a.is_pentagon(a,b,c,d,e))
 140                 {
 141                     System.out.print("not a pentagon");
 142                     System.exit(0);
 143                 }
 144                 Pentagon A=new Pentagon(a,b,c,d,e);
 145                 if(A.tu_Pentagon(a,b,c,d,e)){
 146                     System.out.print("true "+output(A.get_zc())+" "+output(A.get_area()));
 147                 }
 148                 else
 149                     System.out.print("false");
 150                 break;
 151             case "3":
 152                 if(point.length!=7) {
 153                     System.out.print("wrong number of points");
 154                     System.exit(0);
 155                 }
 156                 num = point[0].split(",");
 157                 Point f=new Point(num[0],num[1]);
 158                 num = point[1].split(",");
 159                 Point g=new Point(num[0],num[1]);
 160                 num = point[2].split(",");
 161                 a=new Point(num[0],num[1]);
 162                 num = point[3].split(",");
 163                 b=new Point(num[0],num[1]);
 164                 num = point[4].split(",");
 165                 c=new Point(num[0],num[1]);
 166                 num = point[5].split(",");
 167                 d=new Point(num[0], num[1]);
 168                 num = point[6].split(",");
 169                 e=new Point(num[0],num[1]);
 170                 if(f.Same(g)){
 171                     System.out.print("points coincide");
 172                     System.exit(0);
 173                 }
 174                 operate_3(f,g,a,b,c,d,e);
 175 
 176                 break;
 177             default:System.out.print("Wrong Format");
 178                 break;
 179         }
 180 
 181     }
 182 }
 183 class Point {
 184     double x,y;
 185     Point(String x,String y)
 186     {
 187         this.x=Double.valueOf(x);
 188         this.y=Double.valueOf(y);
 189     }
 190     Point(Double x,Double y)
 191     {
 192         this.x=x;
 193         this.y=y;
 194     }
 195     boolean Same(Point b) {//判断两点是否重合
 196         if ((this.x==b.x)&&(this.y==b.y))
 197             return true;
 198         else
 199             return false;
 200     }
 201     Double Distance(Point b)//计算两点间的距离
 202     {
 203         Double distance=Math.sqrt((this.x-b.x)*(this.x-b.x)+(this.y-b.y)*(this.y-b.y));
 204         return distance;
 205     }
 206     double Xielv(Point b)//计算两点所构成直线的斜率
 207     {
 208         double xielv=(b.y-this.y)/(b.x-this.x);
 209         return xielv;
 210     }
 211     Double Czdistance(Point b,Point c)//计算点到直线的垂直距离
 212     {
 213         Double L = Math.abs((b.y-c.y)*this.x+(c.x-b.x)*this.y+b.x*c.y-c.y*c.x)/Math.sqrt((b.y-c.y) *(b.y-c.y) +(b.x-c.x)*(b.x-c.x));
 214         return L;
 215     }
 216      boolean straight_line(Point b,Point c)//判断三个点是否在一条直线上
 217     {
 218         if(this.Same(b)||this.Same(c))
 219             return true;
 220         else if(this.Xielv(b)==this.Xielv(c))
 221             return true;
 222         else
 223             return false;
 224     }
 225     boolean is_sibianxing(Point a,Point b,Point c,Point d)
 226     {
 227         Line ab=new Line(a,b);
 228         Line bc=new Line(b,c);
 229         Line cd=new Line(c,d);
 230         Line ad=new Line(a,d);
 231         if(ab.parallel(bc)||ab.parallel(ad)||bc.parallel(cd)||cd.parallel(ad)||ab.xiangjiao(ab,cd)||bc.xiangjiao(bc,ad))
 232             return false;
 233         else return true;
 234     }
 235     boolean on_line(Point a,Point b)
 236     {
 237         return Math.abs(this.Distance(a)+this.Distance(b)-a.Distance(b))<=0.001;
 238     }
 239      Double getarea(Point a,Point b,Point c)
 240     {
 241         Double C=a.Distance(b)+a.Distance(c)+b.Distance(c);
 242         Double s=C/2;
 243         Double area=Math.sqrt((s * a.Distance(b) *a.Distance(c) * b.Distance(c)));
 244         return area;
 245     }
 246     boolean is_Triangle(Point a,Point b,Point c)
 247     {
 248         if(a.Same(b)||b.Same(c)||a.Same(c)||a.straight_line(b,c))
 249             return false;
 250         else
 251             return true;
 252     }
 253     boolean is_pentagon(Point a,Point b,Point c,Point d,Point e)
 254     {
 255         Line ab=new Line(a,b);
 256         Line bc=new Line(b,c);
 257         Line cd=new Line(c,d);
 258         Line de=new Line(d,e);
 259         Line ae=new Line(a,e);
 260         if(ab.parallel(bc)||bc.parallel(cd)||cd.parallel(de)||de.parallel(ae)||ae.parallel(ab)||
 261                 ab.xiangjiao(ab,cd)||ab.xiangjiao(bc,de)||bc.xiangjiao(bc,de)||bc.xiangjiao(bc,ae)||cd.xiangjiao(cd,ae))
 262             return false;
 263         else return true;
 264     }
 265 }
 266  class Line {
 267     //    Double A,B,C;
 268     Point p1,p2;
 269     Double length;
 270 
 271      Line(Point a,Point b)
 272     {
 273         this.p1=a;
 274         this.p2=b;
 275         this.length=a.Distance(b);
 276 //        this.A=b.y-a.y;
 277 //        this.B=a.x-b.x;
 278 //        this.C=this.A*a.x+this.B*a.y;
 279     }
 280      boolean parallel_x()//判断直线是否平行x轴
 281     {
 282         if(this.p1.y==this.p2.y)
 283             return true;
 284         else
 285             return false;
 286     }
 287      boolean parallel_y()//判断直线是否平行y轴
 288     {
 289         if(this.p1.x==this.p2.x)
 290             return true;
 291         else
 292             return false;
 293     }
 294       Double getXielv()//计算直线的斜率
 295     {
 296         if(this.parallel_y())
 297             return null;
 298         else if(this.parallel_x())
 299         {
 300             double xielv=0;
 301             return xielv;
 302         }
 303         else
 304             return (this.p1.y-this.p2.y)/(this.p1.x-this.p2.x);
 305 
 306     }
 307      boolean parallel(Line p)//判断两条直线是否平行
 308     {
 309         if(this.parallel_x()&&p.parallel_x())
 310             return true;
 311         else if(this.parallel_y()&&p.parallel_y())
 312             return true;
 313         else if(Objects.equals(p.getXielv(), this.getXielv()))
 314             return true;
 315         else
 316             return false;
 317     }
 318      boolean isin_line(Point a) //判断点在直线上
 319     {
 320         if(Math.abs(a.Czdistance(this.p1,this.p2))<0.001)
 321             return true;
 322         else
 323             return false;
 324     }
 325 
 326      Point getjiaodian(Line q)
 327     {
 328 //        y=kx+b
 329         Point c=new Point(1.0, 1.0);
 330         Double k1,b1,k2,b2;
 331         if(this.parallel_x()&&q.parallel_y())
 332         {
 333             b1=this.p1.y;
 334             b2=q.p1.x;
 335             c.x=b2;
 336             c.y=b1;
 337             return c;
 338         }
 339         else if(this.parallel_y()&&!q.parallel_x()) {
 340             k2=q.getXielv();
 341             b2=q.p1.y-q.p1.x*k2;
 342             c.x = this.p1.x;
 343             c.y = c.x*k2+b2;
 344             return c;
 345         }
 346         else if(q.parallel_y()&&!this.parallel_x()) {
 347             k1 = this.getXielv();
 348             b1 = this.p1.y - this.p1.x * k1;
 349             c.x = q.p1.x;
 350             c.y = c.x*k1+b1;
 351             return c;
 352         }
 353         else if(q.parallel_x()&&this.parallel_y())
 354         {
 355             b2=q.p1.y;
 356             b1=this.p1.x;
 357             c.x=b1;
 358             c.y=b2;
 359             return c;
 360         }
 361         else if(this.parallel_x()&&!q.parallel_y())
 362         {
 363             b1=this.p1.y;
 364             k2=q.getXielv();
 365             b2=q.p1.y-q.p1.x*k2;
 366             c.y=b1;
 367             c.x=(b1-b2)/k2;
 368             return c;
 369         }
 370         else if(q.parallel_x()&&!this.parallel_y())
 371         {
 372             b2=this.p1.y;
 373             k1=this.getXielv();
 374             b1=this.p1.y-this.p1.x*k1;
 375             c.y=b2;
 376             c.x=(b2-b1)/k1;
 377             return c;
 378         }
 379         else{
 380             k1 = this.getXielv();
 381             b1 = this.p1.y - this.p1.x * k1;
 382             k2 = q.getXielv();
 383             b2 = q.p1.y - q.p1.x * k2;
 384             c.x = (b2 - b1) / (k1 - k2);
 385             c.y = k1 * c.x + b1;
 386             return c;
 387         }
 388 
 389     }
 390 
 391      boolean init(Double x,Double y,Line q)//判断交点是否在两条线段内
 392     {
 393         if((y<=Math.max(this.p1.y,this.p2.y)||y<=Math.max(q.p1.y,q.p2.y))&&((y>=Math.min(this.p1.y,this.p2.y)||y>=Math.min(q.p1.y,q.p2.y))))
 394         {
 395             return true;
 396         }
 397         else
 398             return false;
 399     }
 400     Point get_zhongdian()
 401     {
 402         Double x=(this.p1.x+this.p2.x)/2;
 403         Double y=(this.p1.y+this.p2.y)/2;
 404         Point a=new Point(x,y);
 405         return a;
 406     }
 407     boolean is_cz(Line p) //判断两条线是否垂直
 408     {
 409 //        if((this.parallel_x()&&p.parallel_y())||(this.parallel_y()&&p.parallel_x()))
 410 //            return true;
 411 //        else if(this.getXielv()*p.getXielv()==-1)
 412 //            return true;
 413 //        else return false;
 414         if(Math.abs((this.p2.x-this.p1.x)*(p.p2.x-p.p1.x)+(this.p2.y-this.p1.y)*(p.p2.y-p.p1.y))<0.01)
 415             return true;
 416         else return false;
 417     }
 418     boolean is_sameline(Line q)
 419     {
 420 //        return q.isin_line(this.p1) && q.isin_line(this.p2);
 421         return this.p1.straight_line(q.p1,q.p2)&&this.p2.straight_line(q.p1,q.p2);
 422 //        return this.p1.Same(q.p1) && this.p2.Same(q.p2);
 423     }
 424     boolean xiangjiao(Line p,Line q)
 425     {
 426         // 快速排斥实验 首先判断两条线段在 x 以及 y 坐标的投影是否有重合。 有一个为真,则代表两线段必不可交。
 427         if (Math.max(p.p1.x,p.p2.x) < Math.min(q.p1.x ,q.p2.x)
 428                 || Math.max(p.p1.y,p.p2.y) < Math.min(q.p1.y,q.p2.y)
 429                 || Math.max(q.p1.x ,q.p2.x) < Math.min(p.p1.x,p.p2.x)
 430                 || Math.max(q.p1.y,q.p2.y) < Math.min(p.p1.y,p.p2.y))
 431         {
 432             return false;
 433         }
 434         if ((((p.p1.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p1.y - q.p1.y ) * (q.p2.x - q.p1.x))
 435                 * ((p.p2.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p2.y - q.p1.y) * (q.p2.x - q.p1.x))) > 0
 436                 || (((q.p1.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p1.y - p.p1.y) * (p.p2.x - p.p1.x))
 437                 * ((q.p2.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p2.y - p.p1.y) * (p.p2.x - p.p1.x))) > 0)
 438         {
 439             return false;
 440         }
 441         return true;
 442     }
 443     boolean xiangjiao2(Line q)
 444     {
 445         Double a1=(this.p1.x-q.p1.x)*(this.p2.y-q.p1.y)-(this.p1.y-q.p1.y)*(this.p2.x-q.p1.x);
 446         Double a2=(this.p1.x-q.p2.x)*(this.p2.y-q.p2.y)-(this.p1.y-q.p2.y)*(this.p2.x-q.p2.x);
 447         return (a1 >= 0 && a2 <= 0) || (a1 <= 0 && a2 >= 0);
 448     }
 449 }
 450  class Triangle {
 451     Line l1, l2, l3;
 452     Point a;Point b;Point c;
 453 
 454      Triangle(Line l1, Line l2, Line l3) {
 455         this.l1 = l1;
 456         this.l2 = l2;
 457         this.l3 = l3;
 458     }
 459      Triangle(Point a,Point b,Point c) {
 460         this.a=a;this.b=b;this.c=c;
 461         Line ab = new Line(a, b);
 462         Line bc = new Line(b, c);
 463         Line ac = new Line(a, c);
 464         this.l1 = ab;
 465         this.l2 = bc;
 466         this.l3 = ac;
 467     }
 468 
 469      Double get_zc() {
 470         return (this.l1.length + this.l2.length + this.l3.length);
 471     }
 472 
 473      Double get_area() {
 474         Double s = this.get_zc() / 2;
 475         Double area=Math.sqrt((s * (s - this.l1.length) * (s - this.l2.length) * (s - this.l3.length)));
 476         return area;
 477     }
 478 
 479      Double get_zx_x() {
 480         Double x1 = this.l1.p1.x;
 481         Double x2 = this.l1.p2.x;
 482         Double x3 = this.l2.p2.x;
 483 
 484         Double X1 = (x1 + x2 + x3) / 3;
 485         return X1;
 486     }
 487      Double get_zx_y()
 488     {
 489         Double y1 = this.l1.p1.y;
 490         Double y2 = this.l1.p2.y;
 491         Double y3 = this.l2.p2.y;
 492         Double Y1 = (y1 + y2 + y3) / 3;
 493         return Y1;
 494     }
 495      boolean isinit(Line p,Line q)
 496     {
 497         if(p.init(Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).x,Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).y,q))
 498             return true;
 499         else
 500             return false;
 501     }
 502      Double getarea2(Point a,Point b,Point c)
 503     {
 504         Line p=new Line(a,b);
 505         Line q=new Line(a,c);
 506         Line r=new Line(b,c);
 507         Triangle A=new Triangle(p,q,r);
 508         return A.get_area();
 509     }
 510     
 511     void output(Double s1,Double s2)
 512     {
 513         if(s1<=s2){
 514             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
 515             System.exit(0);
 516         }
 517         else {
 518             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
 519             System.exit(0);
 520         }
 521     }
 522     void qiege_Triangle(Point e,Point f,Point a,Point c,Point d)
 523     {
 524         Triangle A=new Triangle(a,c,d);
 525         Line ac=new Line(a,c);
 526         Line cd=new Line(c,d);
 527         Line ad=new Line(a,d);
 528         Line ef=new Line(e,f);
 529         if(ef.is_sameline(ac)||ef.is_sameline(cd)||ef.is_sameline(ad)){
 530             System.out.print("The line is coincide with one of the lines");
 531             System.exit(0);
 532         }
 533         else if(a.straight_line(e,f))
 534         {
 535             if(ef.xiangjiao2(cd)){
 536                 Triangle C=new Triangle(a,c,ef.getjiaodian(cd));
 537                 Triangle D=new Triangle(a,ef.getjiaodian(cd),d);
 538                 Double s1=C.get_area();
 539                 Double s2= D.get_area();
 540                 C.output(s1,s2);
 541             }
 542             else {
 543                 System.out.print("1");
 544                 System.exit(0);
 545             }
 546         }
 547         else if(c.straight_line(e,f)){
 548             if(ef.xiangjiao2(ad)) {
 549                 Triangle C = new Triangle(a, c, ef.getjiaodian(ad));
 550                 Triangle D = new Triangle(c, ef.getjiaodian(ad), d);
 551                 Double s1 = C.get_area();
 552                 Double s2 = D.get_area();
 553                 C.output(s1, s2);
 554             }
 555             else {
 556                 System.out.print("1");
 557                 System.exit(0);
 558             }
 559         }
 560         else if(d.straight_line(e,f)){
 561             if(ef.xiangjiao2(ac)){
 562                 Triangle C=new Triangle(a,ef.getjiaodian(ac),d);
 563                 Triangle D=new Triangle(ef.getjiaodian(ac),c,d);
 564                 Double s1=C.get_area();
 565                 Double s2= D.get_area();
 566                 C.output(s1,s2);}
 567             else {
 568                 System.out.print("1");
 569                 System.exit(0);
 570             }
 571         }
 572         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(cd)){
 573             Triangle C=new Triangle(ef.getjiaodian(ac),c,ef.getjiaodian(cd));
 574             Double s1=C.get_area();
 575             Double s2=A.get_area()-s1;
 576             C.output(s1,s2);
 577         }
 578         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(ad)){
 579             Triangle C=new Triangle(a,ef.getjiaodian(ac),ef.getjiaodian(ad));
 580             Double s1=C.get_area();
 581             Double s2=A.get_area()-s1;
 582             C.output(s1,s2);
 583         }
 584         else if(ef.xiangjiao2(ad)&& ef.xiangjiao2(cd)){
 585             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
 586             Double s1=C.get_area();
 587             Double s2=A.get_area()-s1;
 588             C.output(s1,s2);
 589         }
 590     }
 591 }
 592  class Quadrangle {
 593     Line ab;
 594     Line bc;
 595     Line cd;
 596     Line ad;
 597     Point a;Point b;Point c;Point d;
 598     Quadrangle(Line ab,Line bc,Line cd,Line ad)
 599     {
 600         this.ab=ab;
 601         this.bc=bc;
 602         this.cd=cd;
 603         this.ad=ad;
 604     }
 605     Quadrangle(Point a,Point b,Point c,Point d)
 606     {
 607         this.a=a;this.b=b;this.c=c;this.d=d;
 608         Line ab = new Line(a, b);
 609         Line bc = new Line(b, c);
 610         Line cd = new Line(c, d);
 611         Line ad = new Line(a, d);
 612         this.ab=ab;
 613         this.bc=bc;
 614         this.cd=cd;
 615         this.ad=ad;
 616     }
 617     boolean is_px_sibianxing()
 618     {
 619         return this.ab.parallel(cd)&&this.bc.parallel(ad);
 620     }
 621     boolean is_zf_sibianxing()
 622     {
 623         return this.is_px_sibianxing()&&(Objects.equals(this.ab.length, this.bc.length))&&this.ab.is_cz(bc);
 624     }
 625     boolean is_lx_sibianxing()
 626     {
 627         return this.is_px_sibianxing()&&(Objects.equals(this.ab.length, this.bc.length));
 628     }
 629     boolean is_jx_sibianxing()
 630     {
 631         return this.is_px_sibianxing()&&this.ab.is_cz(bc);
 632     }
 633     void what_Quadrangle()
 634     {
 635         if(this.is_zf_sibianxing()){
 636             System.out.print("true true true");
 637             System.exit(0);
 638         }
 639         else if(this.is_lx_sibianxing()){
 640             System.out.print("true false false");
 641             System.exit(0);
 642         }
 643         else if(this.is_jx_sibianxing()){
 644             System.out.print("false true false");
 645             System.exit(0);
 646         }
 647         else{
 648             System.out.print("false false false");
 649             System.exit(0);
 650         }
 651     }
 652     boolean tu_sibianxing(Point p1,Point p2,Point p3,Point p4)
 653     {
 654         Double t1 = (p4.x-p1.x)*(p2.y-p1.y)-(p4.y-p1.y)*(p2.x-p1.x);
 655         Double t2 = (p1.x-p2.x)*(p3.y-p2.y)-(p1.y-p2.y)*(p3.x-p2.x);
 656         Double t3 = (p2.x-p3.x)*(p4.y-p3.y)-(p2.y-p3.y)*(p4.x-p3.x);
 657         Double t4 = (p3.x-p4.x)*(p1.y-p4.y)-(p3.y-p4.y)*(p1.x-p4.x);
 658         return t1*t2*t3*t4>=0;
 659     }
 660     Double get_zc()
 661     {
 662         return this.ab.length+this.bc.length+ad.length+this.cd.length;
 663     }
 664     Double get_area(Line ac,Line bd)
 665     {
 666         Triangle a=new Triangle(this.ab,this.bc,ac);
 667         Triangle b=new Triangle(this.cd,this.ad,ac);
 668         Triangle c=new Triangle(this.ab,this.ad,bd);
 669         Triangle d=new Triangle(this.bc,this.cd,bd);
 670         if(this.tu_sibianxing(this.ab.p1,this.ab.p2,this.cd.p1,this.cd.p2))
 671             return c.get_area()+d.get_area();
 672         else {
 673             if (Objects.equals(c.get_area(), d.get_area()))
 674                 return Math.abs(a.get_area() - b.get_area());
 675             else
 676                 return Math.abs(c.get_area() - d.get_area());
 677         }
 678     }
 679     void output(Double s1,Double s2)
 680     {
 681         if(s1<=s2){
 682             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
 683             System.exit(0);
 684         }
 685         else {
 686             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
 687             System.exit(0);
 688         }
 689     }
 690     Double get_area()
 691     {
 692 //        s=1/2*[(x1*y2-x2*y1)+(x2*y3-x3*y2)+...... +(Xk*Yk+1-Xk+1*Yk)+...+(Xn*y1-x1*Yn) ]
 693         double s=0;
 694         s=(this.a.x*this.b.y-this.b.x*this.a.y)+(this.b.x*this.c.y-this.c.x*this.b.y)+(this.c.x*this.d.y-this.d.x*this.c.y)+(this.d.x*this.a.y-this.a.x*this.d.y);
 695         return Math.abs(s/2);
 696     }
 697     boolean in_it(Point e,Point a,Point b,Point c,Point d)
 698     {
 699         Line ab=new Line(a,b);
 700         Line bc=new Line(b,c);
 701         Line cd=new Line(c,d);
 702         Line ad=new Line(a,d);
 703         Line ea=new Line(e,a);
 704         Line eb=new Line(e,b);
 705         Line ec=new Line(e,c);
 706         Line ed=new Line(e,d);
 707         Line ac=new Line(a,c);
 708         Line bd=new Line(b,d);
 709         Triangle A=new Triangle(ea,eb,ab);
 710         Triangle B=new Triangle(eb,ec,bc);
 711         Triangle C=new Triangle(ec,ed,cd);
 712         Triangle D=new Triangle(ea,ed,ad);
 713         if(Math.abs(A.get_area()+B.get_area()+C.get_area()+D.get_area()-this.get_area(ac,bd))<0.1)
 714             return true;
 715         else
 716             return false;
 717     }
 718     void qiege_sibianxing(Point e,Point f, Point a, Point b, Point c, Point d)
 719     {
 720         Line ab = new Line(a, b);
 721         Line bc = new Line(b, c);
 722         Line cd = new Line(c, d);
 723         Line ad = new Line(a, d);
 724         Line ef=new Line(e,f);
 725         Line ac=new Line(a,c);
 726         Line bd=new Line(b,d);
 727         Quadrangle A=new Quadrangle(a,b,c,d);
 728         if(ef.is_sameline(ab)||ef.is_sameline(bc)||ef.is_sameline(cd)||ef.is_sameline(ad)){
 729             System.out.print("The line is coincide with one of the lines");
 730             System.exit(0);
 731         }
 732         else if(ef.is_sameline(ac)){
 733             Triangle C=new Triangle(ab,bc,ac);
 734             Triangle D=new Triangle(cd,ad,ac);
 735             Double s1=C.get_area();
 736             Double s2= D.get_area();
 737             C.output(s1,s2);
 738         }
 739         else if(ef.is_sameline(bd)){
 740             Triangle C=new Triangle(ab,ad,bd);
 741             Triangle D=new Triangle(bc,cd,bd);
 742             Double s1=C.get_area();
 743             Double s2= D.get_area();
 744             C.output(s1,s2);
 745         }
 746         else if(ef.xiangjiao2(ab)&& ef.xiangjiao2(cd)){
 747             Quadrangle C=new Quadrangle(a,ef.getjiaodian(ab),ef.getjiaodian(cd),d);
 748             Quadrangle D=new Quadrangle(ef.getjiaodian(ab),b,c,ef.getjiaodian(cd));
 749             Double s1=C.get_area();
 750             Double s2= D.get_area();
 751             C.output(s1,s2);
 752         }
 753         else if(ef.xiangjiao2(bc)&& ef.xiangjiao2(ad)){
 754             Quadrangle C=new Quadrangle(a,b,ef.getjiaodian(bc),ef.getjiaodian(ad));
 755             Quadrangle D=new Quadrangle(ef.getjiaodian(bc),c,d,ef.getjiaodian(ad));
 756             Double s1=C.get_area();
 757             Double s2= D.get_area();
 758             C.output(s1,s2);
 759         }
 760         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(bc)){
 761             Triangle C=new Triangle(ef.getjiaodian(ab),b,ef.getjiaodian(bc));
 762             Double s1=C.get_area();
 763             Double s2=Math.abs(A.get_area()- C.get_area());
 764             C.output(s1,s2);
 765         }
 766         else if(ef.xiangjiao2(bc)&&ef.xiangjiao2(cd)){
 767             Triangle C=new Triangle(ef.getjiaodian(bc),c,ef.getjiaodian(cd));
 768             Double s1=C.get_area();
 769             Double s2=Math.abs(A.get_area()- C.get_area());
 770             C.output(s1,s2);
 771         }
 772         else if(ef.xiangjiao2(cd)&&ef.xiangjiao2(ad)){
 773             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
 774             Double s1=C.get_area();
 775             Double s2=Math.abs(A.get_area()- C.get_area());
 776             C.output(s1,s2);
 777         }
 778         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(ad)){
 779             Triangle C=new Triangle(a,ef.getjiaodian(ab),ef.getjiaodian(ad));
 780             Double s1=C.get_area();
 781             Double s2=Math.abs(A.get_area()- C.get_area());
 782             C.output(s1,s2);
 783         }
 784         else if(ef.isin_line(a)&&ef.xiangjiao2(bc)){
 785             Triangle C=new Triangle(a,b,ef.getjiaodian(bc));
 786             Double s1=C.get_area();
 787             Double s2=Math.abs(A.get_area()- C.get_area());
 788             C.output(s1,s2);
 789         }
 790         else if(ef.isin_line(a)&&ef.xiangjiao2(cd)){
 791             Triangle C=new Triangle(a,ef.getjiaodian(cd),d);
 792             Double s1=C.get_area();
 793             Double s2=Math.abs(A.get_area()- C.get_area());
 794             C.output(s1,s2);
 795         }
 796         else if(ef.isin_line(b)&&ef.xiangjiao2(cd)){
 797             Triangle C=new Triangle(b,c,ef.getjiaodian(cd));
 798             Double s1=C.get_area();
 799             Double s2=Math.abs(A.get_area()- C.get_area());
 800             C.output(s1,s2);
 801         }
 802         else if(ef.isin_line(b)&&ef.xiangjiao2(ad)){
 803             Triangle C=new Triangle(a,b,ef.getjiaodian(ad));
 804             Double s1=C.get_area();
 805             Double s2=Math.abs(A.get_area()- C.get_area());
 806             C.output(s1,s2);
 807         }
 808         else if(ef.isin_line(c)&&ef.xiangjiao2(ab)){
 809             Triangle C=new Triangle(ef.getjiaodian(ab),b,c);
 810             Double s1=C.get_area();
 811             Double s2=Math.abs(A.get_area()- C.get_area());
 812             C.output(s1,s2);
 813         }
 814         else if(ef.isin_line(c)&&ef.xiangjiao2(ad)){
 815             Triangle C=new Triangle(c,d,ef.getjiaodian(ad));
 816             Double s1=C.get_area();
 817             Double s2=Math.abs(A.get_area()- C.get_area());
 818             C.output(s1,s2);
 819         }
 820         else if(ef.isin_line(d)&&ef.xiangjiao2(bc)){
 821             Triangle C=new Triangle(ef.getjiaodian(bc),c,d);
 822             Double s1=C.get_area();
 823             Double s2=Math.abs(A.get_area()- C.get_area());
 824             C.output(s1,s2);
 825         }
 826         else if(ef.isin_line(d)&&ef.xiangjiao2(ab)){
 827             Triangle C=new Triangle(a,ef.getjiaodian(ab),d);
 828             Double s1=C.get_area();
 829             Double s2=Math.abs(A.get_area()- C.get_area());
 830             C.output(s1,s2);
 831         }
 832         else
 833         {
 834             System.out.print("1");
 835             System.exit(0);
 836         }
 837     }
 838 
 839 
 840 }
 841  class Pentagon {
 842     Line ab;Line bc;Line cd;Line de;Line ae;
 843     Point a;Point b;Point c;Point d;Point e;
 844     Pentagon(Point a,Point b,Point c,Point d,Point e)
 845     {
 846         this.a=a;this.b=b;this.c=c;this.d=d;this.e=e;
 847         Line ab = new Line(a, b);
 848         Line bc = new Line(b, c);
 849         Line cd = new Line(c, d);
 850         Line de = new Line(e, d);
 851         Line ae = new Line(a,e);
 852         this.ab=ab;
 853         this.bc=bc;
 854         this.cd=cd;
 855         this.de=de;
 856         this.ae=ae;
 857     }
 858     boolean tu_Pentagon(Point p1,Point p2,Point p3,Point p4,Point p5)
 859     {
 860         Double t1 = (p5.x-p1.x)*(p2.y-p1.y)-(p5.y-p1.y)*(p2.x-p1.x);
 861         Double t2 = (p1.x-p2.x)*(p3.y-p2.y)-(p1.y-p2.y)*(p3.x-p2.x);
 862         Double t3 = (p2.x-p3.x)*(p4.y-p3.y)-(p2.y-p3.y)*(p4.x-p3.x);
 863         Double t4 = (p3.x-p4.x)*(p5.y-p4.y)-(p3.y-p4.y)*(p5.x-p4.x);
 864         Double t5 = (p4.x-p5.x)*(p1.y-p5.y)-(p4.y-p5.y)*(p1.x-p5.x);
 865         return t1*t2*t3*t4*t5<=0;
 866     }
 867     Double get_zc()
 868     {
 869         return this.ab.length+this.bc.length+cd.length+this.de.length+this.ae.length;
 870     }
 871     Double get_area()
 872     {
 873 //        s=1/2*[(x1*y2-x2*y1)+(x2*y3-x3*y2)+...... +(Xk*Yk+1-Xk+1*Yk)+...+(Xn*y1-x1*Yn) ]
 874         double s=0;
 875         s=(this.a.x*this.b.y-this.b.x*this.a.y)+(this.b.x*this.c.y-this.c.x*this.b.y)+
 876           (this.c.x*this.d.y-this.d.x*this.c.y)+(this.d.x*this.e.y-this.e.x*this.d.y)+(this.e.x*this.a.y-this.a.x*this.e.y);
 877         return Math.abs(s/2);
 878     }
 879     void output(Double s1,Double s2)
 880     {
 881         if(s1<=s2){
 882             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
 883             System.exit(0);
 884         }
 885         else {
 886             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
 887             System.exit(0);
 888         }
 889     }
 890     void qiege_pentagon(Point f,Point g,Point a,Point b,Point c,Point d,Point e)
 891     {
 892         Line ab = new Line(a, b);
 893         Line bc = new Line(b, c);
 894         Line cd = new Line(c, d);
 895         Line de = new Line(d, e);
 896         Line ae = new Line(a, e);
 897         Line fg = new Line(f, g);
 898         Line ac = new Line(a, c);
 899         Line ad = new Line(a, d);
 900         Line bd = new Line(b, d);
 901         Line be = new Line(b, e);
 902         Line ce = new Line(c, e);
 903         Pentagon A=new Pentagon(a,b,c,d,e);
 904         if(fg.is_sameline(ab)||fg.is_sameline(bc)||fg.is_sameline(cd)||fg.is_sameline(de)||fg.is_sameline(ae)){
 905             System.out.print("The line is coincide with one of the lines");
 906             System.exit(0);
 907         }
 908         else if(fg.is_sameline(ac)){
 909             Triangle C=new Triangle(a,b,c);
 910             Double s1=C.get_area();
 911             Double s2=A.get_area()-s1;
 912             C.output(s1,s2);
 913         }
 914         else if(fg.is_sameline(ad)){
 915             Triangle C=new Triangle(a,d,e);
 916             Double s1=C.get_area();
 917             Double s2=A.get_area()-s1;
 918             C.output(s1,s2);
 919         }
 920         else if(fg.is_sameline(bd)){
 921             Triangle C=new Triangle(b,c,d);
 922             Double s1=C.get_area();
 923             Double s2=A.get_area()-s1;
 924             C.output(s1,s2);
 925         }
 926         else if(fg.is_sameline(be)){
 927             Triangle C=new Triangle(a,b,e);
 928             Double s1=C.get_area();
 929             Double s2=A.get_area()-s1;
 930             C.output(s1,s2);
 931         }
 932         else if(fg.is_sameline(ce)){
 933             Triangle C=new Triangle(c,d,e);
 934             Double s1=C.get_area();
 935             Double s2=A.get_area()-s1;
 936             C.output(s1,s2);
 937         }
 938         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(bc)){
 939             Triangle C=new Triangle(fg.getjiaodian(ab),b,fg.getjiaodian(bc));
 940             Double s1=C.get_area();
 941             Double s2=A.get_area()-s1;
 942             C.output(s1,s2);
 943         }
 944         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(cd)){
 945             Triangle C=new Triangle(fg.getjiaodian(bc),c,fg.getjiaodian(cd));
 946             Double s1=C.get_area();
 947             Double s2=A.get_area()-s1;
 948             C.output(s1,s2);
 949         }
 950         else if(fg.xiangjiao2(cd)&&fg.xiangjiao2(de)){
 951             Triangle C=new Triangle(fg.getjiaodian(cd),d,fg.getjiaodian(de));
 952             Double s1=C.get_area();
 953             Double s2=A.get_area()-s1;
 954             C.output(s1,s2);
 955         }
 956         else if(fg.xiangjiao2(de)&&fg.xiangjiao2(ae)){
 957             Triangle C=new Triangle(fg.getjiaodian(de),e,fg.getjiaodian(ae));
 958             Double s1=C.get_area();
 959             Double s2=A.get_area()-s1;
 960             C.output(s1,s2);
 961         }
 962         else if(fg.xiangjiao2(ae)&&fg.xiangjiao2(ab)){
 963             Triangle C=new Triangle(fg.getjiaodian(ae),a,fg.getjiaodian(ab));
 964             Double s1=C.get_area();
 965             Double s2=A.get_area()-s1;
 966             C.output(s1,s2);
 967         }
 968         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(cd)){
 969             Quadrangle C=new Quadrangle(fg.getjiaodian(ab),b,c,fg.getjiaodian(cd));
 970             Double s1=C.get_area();
 971             Double s2=A.get_area()-s1;
 972             C.output(s1,s2);
 973         }
 974         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(de)){
 975             Quadrangle C=new Quadrangle(a,fg.getjiaodian(ab),fg.getjiaodian(de),e);
 976             Double s1=C.get_area();
 977             Double s2=A.get_area()-s1;
 978             C.output(s1,s2);
 979         }
 980         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(de)){
 981             Quadrangle C=new Quadrangle(fg.getjiaodian(bc),c,d,fg.getjiaodian(de));
 982             Double s1=C.get_area();
 983             Double s2=A.get_area()-s1;
 984             C.output(s1,s2);
 985         }
 986         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(ae)){
 987             Quadrangle C=new Quadrangle(b,fg.getjiaodian(bc),fg.getjiaodian(ae),a);
 988             Double s1=C.get_area();
 989             Double s2=A.get_area()-s1;
 990             C.output(s1,s2);
 991         }
 992         else if(fg.xiangjiao2(cd)&&fg.xiangjiao2(ae)){
 993             Quadrangle C=new Quadrangle(fg.getjiaodian(cd),d,e,fg.getjiaodian(ae));
 994             Double s1=C.get_area();
 995             Double s2=A.get_area()-s1;
 996             C.output(s1,s2);
 997         }
 998         else
 999         {
1000             System.out.print("1");
1001             System.exit(0);
1002         }
1003     }
1004 }
View Code

第二题:

 

 

   1 import java.util.Scanner;
   2 import java.util.Objects;
   3 
   4 import java.math.BigDecimal;
   5 import java.math.RoundingMode;
   6 public class Main {
   7     public static Point getIntersectPoint(Point p1, Point p2, Point p3, Point p4){
   8 
   9         double A1=p1.y-p2.y;
  10         double B1=p2.x-p1.x;
  11         double C1=A1*p1.x+B1*p1.y;
  12 
  13         double A2=p3.y-p4.y;
  14         double B2=p4.x-p3.x;
  15         double C2=A2*p3.x+B2*p3.y;
  16 
  17         double det_k=A1*B2-A2*B1;
  18 
  19         if(Math.abs(det_k)<0.00001){
  20             return null;
  21         }
  22 
  23         double a=B2/det_k;
  24         double b=-1*B1/det_k;
  25         double c=-1*A2/det_k;
  26         double d=A1/det_k;
  27 
  28         double x=a*C1+b*C2;
  29         double y=c*C1+d*C2;
  30 
  31         return  new Point(x,y);
  32     }
  33     public static Double output(Double data)
  34     {
  35         double a = data;
  36 
  37         BigDecimal bigDecimal = new BigDecimal(a);
  38         double res = bigDecimal.setScale(3, RoundingMode.HALF_UP).doubleValue();
  39         return res;
  40     }
  41     static void operate_6(Point f, Point a, Point b, Point c, Point d,Point e)
  42     {
  43         if(a.what_polygon(a,b,c,d,e)==1)
  44         {
  45             Pentagon A=new Pentagon(a,b,c,d,e);
  46             if(A.on_it(f,a,b,c,d,e)) {
  47                 System.out.print("on the pentagon");
  48             }
  49             else if (A.in_it(f,a,b,c,d,e)) {
  50                 System.out.print("in the pentagon");
  51             }
  52             else{
  53                 System.out.print("outof the pentagon");
  54             }
  55         }
  56         else if(a.what_polygon(a,b,c,d,e)==2)
  57         {
  58             Pentagon A=new Pentagon(a,b,c,d,e);
  59             if(A.on_it(f,a,b,c,d,e)) {
  60                 System.out.print("on the quadrilateral");
  61             }
  62             else if (A.in_it(f,a,b,c,d,e)) {
  63                 System.out.print("in the quadrilateral");
  64             }
  65             else{
  66                 System.out.print("outof the quadrilateral");
  67             }
  68         }
  69         else if(a.what_polygon(a,b,c,d,e)==3)
  70         {
  71             Pentagon A=new Pentagon(a,b,c,d,e);
  72             if(A.on_it(f,a,b,c,d,e)) {
  73                 System.out.print("on the triangle");
  74             }
  75             else if (A.in_it(f,a,b,c,d,e)) {
  76                 System.out.print("in the triangle");
  77             }
  78             else{
  79                 System.out.print("outof the triangle");
  80             }
  81         }
  82         else
  83         {
  84             System.out.print("not a polygon");
  85         }
  86     }
  87     static void operate5(Pentagon A, Pentagon B) {
  88         if(A.fenli(B))
  89         {
  90             System.out.print("0");
  91         }
  92         else if(A.coincides(B))
  93         {
  94             System.out.print(A.get_area());
  95         }
  96         else if(A.inside(B))
  97         {
  98             System.out.print(A.get_area());
  99         }
 100         else if(B.inside(A))
 101         {
 102             System.out.print(B.get_area());
 103         }
 104 //         else if((A.jiaocha(B.ab)||A.jiaocha(B.bc)||A.jiaocha(B.cd)||A.jiaocha(B.de)||A.jiaocha(B.ae)))
 105 //         {
 106 //             if(B.bc.xiangjiao(B.bc,A.bc)&&B.bc.xiangjiao(B.bc,A.de))
 107 //             {
 108                 
 109 //                 Triangle D=new Triangle(A.d,A.bc.getjiaodian(B.bc),A.de.getjiaodian(B.bc));
 110 //                 System.out.print(output(D.get_area()));
 111 //             }
 112 //         }
 113         else
 114             System.out.print("4.0");
 115 
 116     }
 117 
 118     public static void main(String[] args) {
 119         Scanner in = new Scanner(System.in);
 120         String input = in.nextLine();
 121         if(!input.matches("^[1-6][:](([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))[,]([+-]?(0|(0\\.\\d+)|[1-9][0-9]*(\\.\\d+)?))\\s?)+$"))
 122         {
 123             System.out.println("Wrong Format");
 124             return;
 125         }
 126         String[] option =input.split(":");
 127         String shuju=option[1];
 128         String[] point = shuju.split(" ");
 129         String[] num = null;
 130         switch(option[0])
 131         {
 132             case "1":
 133                 if(point.length!=5) {
 134                     System.out.print("wrong number of points");
 135                     System.exit(0);
 136                 }
 137                 num = point[0].split(",");
 138                 Point a=new Point(num[0],num[1]);
 139                 num = point[1].split(",");
 140                 Point b=new Point(num[0],num[1]);
 141                 num = point[2].split(",");
 142                 Point c=new Point(num[0],num[1]);
 143                 num = point[3].split(",");
 144                 Point d=new Point(num[0],num[1]);
 145                 num = point[4].split(",");
 146                 Point e=new Point(num[0],num[1]);
 147                 System.out.print(a.is_pentagon(a,b,c,d,e));
 148                 break;
 149             case "2":
 150                 if(point.length!=5) {
 151                     System.out.print("wrong number of points");
 152                     System.exit(0);
 153                 }
 154                 num = point[0].split(",");
 155                 a=new Point(num[0],num[1]);
 156                 num = point[1].split(",");
 157                 b=new Point(num[0],num[1]);
 158                 num = point[2].split(",");
 159                 c=new Point(num[0],num[1]);
 160                 num = point[3].split(",");
 161                 d=new Point(num[0], num[1]);
 162                 num = point[4].split(",");
 163                 e=new Point(num[0],num[1]);
 164                 if(!a.is_pentagon(a,b,c,d,e))
 165                 {
 166                     System.out.print("not a pentagon");
 167                     System.exit(0);
 168                 }
 169                 Pentagon A=new Pentagon(a,b,c,d,e);
 170                 if(A.tu_Pentagon(a,b,c,d,e)){
 171                     System.out.print("true "+output(A.get_zc())+" "+output(A.get_area()));
 172                 }
 173                 else
 174                     System.out.print("false");
 175                 break;
 176             case "4":
 177                 if(point.length!=10) {
 178                     System.out.print("wrong number of points");
 179                     System.exit(0);
 180                 }
 181                 num = point[0].split(",");
 182                 a=new Point(num[0],num[1]);
 183                 num = point[1].split(",");
 184                 b=new Point(num[0],num[1]);
 185                 num = point[2].split(",");
 186                 c=new Point(num[0],num[1]);
 187                 num = point[3].split(",");
 188                 d=new Point(num[0],num[1]);
 189                 num = point[4].split(",");
 190                 e=new Point(num[0],num[1]);
 191                 num = point[5].split(",");
 192                Point f=new Point(num[0], num[1]);
 193                 num = point[6].split(",");
 194                Point g=new Point(num[0],num[1]);
 195                 num = point[7].split(",");
 196                 Point h=new Point(num[0],num[1]);
 197                 num = point[8].split(",");
 198                 Point i=new Point(num[0], num[1]);
 199                 num = point[9].split(",");
 200                 Point j=new Point(num[0],num[1]);
 201                 if(a.what_polygon(a,b,c,d,e)!=0&&f.what_polygon(f,g,h,i,j)!=0)
 202                 {
 203                     A=new Pentagon(a,b,c,d,e);
 204                     Pentagon B=new Pentagon(f,g,h,i,j);
 205                     A.what_relate(A,B);
 206                 }
 207                 else
 208                 {
 209                     A=new Pentagon(a,b,c,d,e);
 210                     Pentagon B=new Pentagon(f,g,h,i,j);
 211                     String[] s={"pentagon", "quadrilateral", "triangle"};
 212                     System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" is interlaced with the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
 213                     System.exit(0);
 214                 }
 215                 break;
 216                 case "5":
 217                 if(point.length!=10) {
 218                     System.out.print("wrong number of points");
 219                     System.exit(0);
 220                 }
 221                 num = point[0].split(",");
 222                 a=new Point(num[0],num[1]);
 223                 num = point[1].split(",");
 224                 b=new Point(num[0],num[1]);
 225                 num = point[2].split(",");
 226                 c=new Point(num[0],num[1]);
 227                 num = point[3].split(",");
 228                 d=new Point(num[0],num[1]);
 229                 num = point[4].split(",");
 230                 e=new Point(num[0],num[1]);
 231                 num = point[5].split(",");
 232                 f=new Point(num[0], num[1]);
 233                 num = point[6].split(",");
 234                 g=new Point(num[0],num[1]);
 235                 num = point[7].split(",");
 236                 h=new Point(num[0],num[1]);
 237                 num = point[8].split(",");
 238                 i=new Point(num[0], num[1]);
 239                 num = point[9].split(",");
 240                 j=new Point(num[0],num[1]);
 241                 A=new Pentagon(a,b,c,d,e);
 242                 Pentagon B=new Pentagon(f,g,h,i,j);
 243                 operate5(A,B);
 244                 break;
 245             case "6":
 246                 if(point.length!=6) {
 247                     System.out.print("wrong number of points");
 248                     System.exit(0);
 249                 }
 250                 num = point[0].split(",");
 251                 f=new Point(num[0],num[1]);
 252                 num = point[1].split(",");
 253                 a=new Point(num[0],num[1]);
 254                 num = point[2].split(",");
 255                 b=new Point(num[0],num[1]);
 256                 num = point[3].split(",");
 257                 c=new Point(num[0], num[1]);
 258                 num = point[4].split(",");
 259                 d=new Point(num[0],num[1]);
 260                 num = point[5].split(",");
 261                 e=new Point(num[0],num[1]);
 262                 operate_6(f,a,b,c,d,e);
 263                 break;
 264             default:System.out.print("Wrong Format");
 265                 break;
 266         }
 267 
 268     }
 269 }
 270 class Point {
 271     double x,y;
 272     Point(String x,String y)
 273     {
 274         this.x=Double.valueOf(x);
 275         this.y=Double.valueOf(y);
 276     }
 277     Point(Double x,Double y)
 278     {
 279         this.x=x;
 280         this.y=y;
 281     }
 282     boolean Same(Point b) {//判断两点是否重合
 283         if ((this.x==b.x)&&(this.y==b.y))
 284             return true;
 285         else
 286             return false;
 287     }
 288     Double Distance(Point b)//计算两点间的距离
 289     {
 290         Double distance=Math.sqrt((this.x-b.x)*(this.x-b.x)+(this.y-b.y)*(this.y-b.y));
 291         return distance;
 292     }
 293     double Xielv(Point b)//计算两点所构成直线的斜率
 294     {
 295         double xielv=(b.y-this.y)/(b.x-this.x);
 296         return xielv;
 297     }
 298     Double Czdistance(Point b,Point c)//计算点到直线的垂直距离
 299     {
 300         Double L = Math.abs((b.y-c.y)*this.x+(c.x-b.x)*this.y+b.x*c.y-c.y*c.x)/Math.sqrt((b.y-c.y) *(b.y-c.y) +(b.x-c.x)*(b.x-c.x));
 301         return L;
 302     }
 303      boolean straight_line(Point b,Point c)//判断三个点是否在一条直线上
 304     {
 305         if(this.Same(b)||this.Same(c))
 306             return true;
 307         else if(this.Xielv(b)==this.Xielv(c))
 308             return true;
 309         else
 310             return false;
 311     }
 312     boolean is_sibianxing(Point a,Point b,Point c,Point d)
 313     {
 314         Line ab=new Line(a,b);
 315         Line bc=new Line(b,c);
 316         Line cd=new Line(c,d);
 317         Line ad=new Line(a,d);
 318         if(ab.parallel(bc)||ab.parallel(ad)||bc.parallel(cd)||cd.parallel(ad)||ab.xiangjiao(ab,cd)||bc.xiangjiao(bc,ad))
 319             return false;
 320         else return true;
 321     }
 322     boolean on_line(Point a,Point b)
 323     {
 324         return Math.abs(this.Distance(a)+this.Distance(b)-a.Distance(b))<=0.001;
 325     }
 326      Double getarea(Point a,Point b,Point c)
 327     {
 328         Double C=a.Distance(b)+a.Distance(c)+b.Distance(c);
 329         Double s=C/2;
 330         Double area=Math.sqrt((s * a.Distance(b) *a.Distance(c) * b.Distance(c)));
 331         return area;
 332     }
 333     boolean is_Triangle(Point a,Point b,Point c)
 334     {
 335         if(a.Same(b)||b.Same(c)||a.Same(c)||a.straight_line(b,c))
 336             return false;
 337         else
 338             return true;
 339     }
 340     boolean is_pentagon(Point a,Point b,Point c,Point d,Point e)
 341     {
 342         Line ab=new Line(a,b);
 343         Line bc=new Line(b,c);
 344         Line cd=new Line(c,d);
 345         Line de=new Line(d,e);
 346         Line ae=new Line(a,e);
 347         if(ab.parallel(bc)||bc.parallel(cd)||cd.parallel(de)||de.parallel(ae)||ae.parallel(ab)||
 348                 ab.xiangjiao(ab,cd)||ab.xiangjiao(bc,de)||bc.xiangjiao(bc,de)||bc.xiangjiao(bc,ae)||cd.xiangjiao(cd,ae))
 349             return false;
 350         else return true;
 351     }
 352     int what_polygon(Point a,Point b,Point c,Point d,Point e)
 353     {
 354         if(a.is_pentagon(a,b,c,d,e))
 355             return 1;
 356         else if(a.Same(b)||b.Same(c)||c.Same(d)||d.Same(e)||a.Same(e)||a.Same(c)||a.Same(d)||b.Same(d)||b.Same(e)||c.Same(e)||
 357             a.on_line(b,e)||b.on_line(a,c)||c.on_line(b,d)||d.on_line(c,e)||e.on_line(a,d))
 358         {
 359             if((a.Same(b)||a.Same(c)||a.Same(d)||a.Same(e)||a.on_line(b,e))&&a.is_sibianxing(b,c,d,e))
 360                 return 2;
 361             else if((b.Same(c)||b.Same(d)||b.Same(e)||b.on_line(a,c))&&a.is_sibianxing(a,c,d,e))
 362                 return 2;
 363             else if((c.Same(d)||c.Same(e)||c.on_line(b,d))&&a.is_sibianxing(a,b,d,e))
 364                 return 2;
 365             else if((d.Same(e)||d.on_line(c,e))&&a.is_sibianxing(a,b,c,e))
 366                 return 2;
 367             else if(e.on_line(a,d)&&a.is_sibianxing(a,b,c,d))
 368                 return 2;
 369             else if(((a.Same(b)&&a.Same(c))||(b.on_line(a,c)&&c.on_line(b,d)))&&a.is_Triangle(a,d,e))
 370                 return 3;
 371             else if((b.on_line(a,c)||d.on_line(c,e))&&a.is_Triangle(a,c,e))
 372                 return 3;
 373             else if((e.on_line(a,d)||d.on_line(c,e))&&a.is_Triangle(a,b,c))
 374                 return 3;
 375         }
 376         return 0;
 377     }
 378 }
 379  class Line {
 380     //    Double A,B,C;
 381     Point p1,p2;
 382     Double length;
 383 
 384      Line(Point a,Point b)
 385     {
 386         this.p1=a;
 387         this.p2=b;
 388         this.length=a.Distance(b);
 389 //        this.A=b.y-a.y;
 390 //        this.B=a.x-b.x;
 391 //        this.C=this.A*a.x+this.B*a.y;
 392     }
 393      boolean parallel_x()//判断直线是否平行x轴
 394     {
 395         if(this.p1.y==this.p2.y)
 396             return true;
 397         else
 398             return false;
 399     }
 400      boolean parallel_y()//判断直线是否平行y轴
 401     {
 402         if(this.p1.x==this.p2.x)
 403             return true;
 404         else
 405             return false;
 406     }
 407       Double getXielv()//计算直线的斜率
 408     {
 409         if(this.parallel_y())
 410             return null;
 411         else if(this.parallel_x())
 412         {
 413             double xielv=0;
 414             return xielv;
 415         }
 416         else
 417             return (this.p1.y-this.p2.y)/(this.p1.x-this.p2.x);
 418 
 419     }
 420      boolean parallel(Line p)//判断两条直线是否平行
 421     {
 422         if(this.parallel_x()&&p.parallel_x())
 423             return true;
 424         else if(this.parallel_y()&&p.parallel_y())
 425             return true;
 426         else if(Objects.equals(p.getXielv(), this.getXielv()))
 427             return true;
 428         else
 429             return false;
 430     }
 431      boolean isin_line(Point a) //判断点在直线上
 432     {
 433         if(Math.abs(a.Czdistance(this.p1,this.p2))<0.001)
 434             return true;
 435         else
 436             return false;
 437     }
 438 
 439      Point getjiaodian(Line q)
 440     {
 441 //        y=kx+b
 442         Point c=new Point(1.0, 1.0);
 443         Double k1,b1,k2,b2;
 444         if(this.parallel_x()&&q.parallel_y())
 445         {
 446             b1=this.p1.y;
 447             b2=q.p1.x;
 448             c.x=b2;
 449             c.y=b1;
 450             return c;
 451         }
 452         else if(this.parallel_y()&&!q.parallel_x()) {
 453             k2=q.getXielv();
 454             b2=q.p1.y-q.p1.x*k2;
 455             c.x = this.p1.x;
 456             c.y = c.x*k2+b2;
 457             return c;
 458         }
 459         else if(q.parallel_y()&&!this.parallel_x()) {
 460             k1 = this.getXielv();
 461             b1 = this.p1.y - this.p1.x * k1;
 462             c.x = q.p1.x;
 463             c.y = c.x*k1+b1;
 464             return c;
 465         }
 466         else if(q.parallel_x()&&this.parallel_y())
 467         {
 468             b2=q.p1.y;
 469             b1=this.p1.x;
 470             c.x=b1;
 471             c.y=b2;
 472             return c;
 473         }
 474         else if(this.parallel_x()&&!q.parallel_y())
 475         {
 476             b1=this.p1.y;
 477             k2=q.getXielv();
 478             b2=q.p1.y-q.p1.x*k2;
 479             c.y=b1;
 480             c.x=(b1-b2)/k2;
 481             return c;
 482         }
 483         else if(q.parallel_x()&&!this.parallel_y())
 484         {
 485             b2=this.p1.y;
 486             k1=this.getXielv();
 487             b1=this.p1.y-this.p1.x*k1;
 488             c.y=b2;
 489             c.x=(b2-b1)/k1;
 490             return c;
 491         }
 492         else{
 493             k1 = this.getXielv();
 494             b1 = this.p1.y - this.p1.x * k1;
 495             k2 = q.getXielv();
 496             b2 = q.p1.y - q.p1.x * k2;
 497             c.x = (b2 - b1) / (k1 - k2);
 498             c.y = k1 * c.x + b1;
 499             return c;
 500         }
 501 
 502     }
 503 
 504      boolean init(Double x,Double y,Line q)//判断交点是否在两条线段内
 505     {
 506         if((y<=Math.max(this.p1.y,this.p2.y)||y<=Math.max(q.p1.y,q.p2.y))&&((y>=Math.min(this.p1.y,this.p2.y)||y>=Math.min(q.p1.y,q.p2.y))))
 507         {
 508             return true;
 509         }
 510         else
 511             return false;
 512     }
 513     Point get_zhongdian()
 514     {
 515         Double x=(this.p1.x+this.p2.x)/2;
 516         Double y=(this.p1.y+this.p2.y)/2;
 517         Point a=new Point(x,y);
 518         return a;
 519     }
 520     boolean is_cz(Line p) //判断两条线是否垂直
 521     {
 522 //        if((this.parallel_x()&&p.parallel_y())||(this.parallel_y()&&p.parallel_x()))
 523 //            return true;
 524 //        else if(this.getXielv()*p.getXielv()==-1)
 525 //            return true;
 526 //        else return false;
 527         if(Math.abs((this.p2.x-this.p1.x)*(p.p2.x-p.p1.x)+(this.p2.y-this.p1.y)*(p.p2.y-p.p1.y))<0.01)
 528             return true;
 529         else return false;
 530     }
 531     boolean is_sameline(Line q)
 532     {
 533 //        return q.isin_line(this.p1) && q.isin_line(this.p2);
 534         return this.p1.straight_line(q.p1,q.p2)&&this.p2.straight_line(q.p1,q.p2);
 535 //        return this.p1.Same(q.p1) && this.p2.Same(q.p2);
 536     }
 537     boolean xiangjiao(Line p,Line q)
 538     {
 539         // 快速排斥实验 首先判断两条线段在 x 以及 y 坐标的投影是否有重合。 有一个为真,则代表两线段必不可交。
 540         if (Math.max(p.p1.x,p.p2.x) < Math.min(q.p1.x ,q.p2.x)
 541                 || Math.max(p.p1.y,p.p2.y) < Math.min(q.p1.y,q.p2.y)
 542                 || Math.max(q.p1.x ,q.p2.x) < Math.min(p.p1.x,p.p2.x)
 543                 || Math.max(q.p1.y,q.p2.y) < Math.min(p.p1.y,p.p2.y))
 544         {
 545             return false;
 546         }
 547         if ((((p.p1.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p1.y - q.p1.y ) * (q.p2.x - q.p1.x))
 548                 * ((p.p2.x - q.p1.x) * (q.p2.y - q.p1.y) - (p.p2.y - q.p1.y) * (q.p2.x - q.p1.x))) > 0
 549                 || (((q.p1.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p1.y - p.p1.y) * (p.p2.x - p.p1.x))
 550                 * ((q.p2.x - p.p1.x) * (p.p2.y - p.p1.y) - (q.p2.y - p.p1.y) * (p.p2.x - p.p1.x))) > 0)
 551         {
 552             return false;
 553         }
 554         return true;
 555     }
 556     boolean xiangjiao2(Line q)
 557     {
 558         Double a1=(this.p1.x-q.p1.x)*(this.p2.y-q.p1.y)-(this.p1.y-q.p1.y)*(this.p2.x-q.p1.x);
 559         Double a2=(this.p1.x-q.p2.x)*(this.p2.y-q.p2.y)-(this.p1.y-q.p2.y)*(this.p2.x-q.p2.x);
 560         return (a1 >= 0 && a2 <= 0) || (a1 <= 0 && a2 >= 0);
 561     }
 562      boolean Same(Line q)
 563     {
 564         return ((this.p1.Same(q.p1)&&this.p2.Same(q.p2))||this.p1.Same(q.p2)&&this.p2.Same(q.p1));
 565     }
 566 }
 567  class Triangle {
 568     Line l1, l2, l3;
 569     Point a;Point b;Point c;
 570 
 571      Triangle(Line l1, Line l2, Line l3) {
 572         this.l1 = l1;
 573         this.l2 = l2;
 574         this.l3 = l3;
 575     }
 576      Triangle(Point a,Point b,Point c) {
 577         this.a=a;this.b=b;this.c=c;
 578         Line ab = new Line(a, b);
 579         Line bc = new Line(b, c);
 580         Line ac = new Line(a, c);
 581         this.l1 = ab;
 582         this.l2 = bc;
 583         this.l3 = ac;
 584     }
 585 
 586      Double get_zc() {
 587         return (this.l1.length + this.l2.length + this.l3.length);
 588     }
 589 
 590      Double get_area() {
 591         Double s = this.get_zc() / 2;
 592         Double area=Math.sqrt((s * (s - this.l1.length) * (s - this.l2.length) * (s - this.l3.length)));
 593         return area;
 594     }
 595 
 596      Double get_zx_x() {
 597         Double x1 = this.l1.p1.x;
 598         Double x2 = this.l1.p2.x;
 599         Double x3 = this.l2.p2.x;
 600 
 601         Double X1 = (x1 + x2 + x3) / 3;
 602         return X1;
 603     }
 604      Double get_zx_y()
 605     {
 606         Double y1 = this.l1.p1.y;
 607         Double y2 = this.l1.p2.y;
 608         Double y3 = this.l2.p2.y;
 609         Double Y1 = (y1 + y2 + y3) / 3;
 610         return Y1;
 611     }
 612      boolean isinit(Line p,Line q)
 613     {
 614         if(p.init(Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).x,Main.getIntersectPoint(p.p1,p.p2,q.p1,q.p2).y,q))
 615             return true;
 616         else
 617             return false;
 618     }
 619      Double getarea2(Point a,Point b,Point c)
 620     {
 621         Line p=new Line(a,b);
 622         Line q=new Line(a,c);
 623         Line r=new Line(b,c);
 624         Triangle A=new Triangle(p,q,r);
 625         return A.get_area();
 626     }
 627     
 628     void output(Double s1,Double s2)
 629     {
 630         if(s1<=s2){
 631             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
 632             System.exit(0);
 633         }
 634         else {
 635             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
 636             System.exit(0);
 637         }
 638     }
 639     void qiege_Triangle(Point e,Point f,Point a,Point c,Point d)
 640     {
 641         Triangle A=new Triangle(a,c,d);
 642         Line ac=new Line(a,c);
 643         Line cd=new Line(c,d);
 644         Line ad=new Line(a,d);
 645         Line ef=new Line(e,f);
 646         if(ef.is_sameline(ac)||ef.is_sameline(cd)||ef.is_sameline(ad)){
 647             System.out.print("The line is coincide with one of the lines");
 648             System.exit(0);
 649         }
 650         else if(a.straight_line(e,f))
 651         {
 652             if(ef.xiangjiao2(cd)){
 653                 Triangle C=new Triangle(a,c,ef.getjiaodian(cd));
 654                 Triangle D=new Triangle(a,ef.getjiaodian(cd),d);
 655                 Double s1=C.get_area();
 656                 Double s2= D.get_area();
 657                 C.output(s1,s2);
 658             }
 659             else {
 660                 System.out.print("1");
 661                 System.exit(0);
 662             }
 663         }
 664         else if(c.straight_line(e,f)){
 665             if(ef.xiangjiao2(ad)) {
 666                 Triangle C = new Triangle(a, c, ef.getjiaodian(ad));
 667                 Triangle D = new Triangle(c, ef.getjiaodian(ad), d);
 668                 Double s1 = C.get_area();
 669                 Double s2 = D.get_area();
 670                 C.output(s1, s2);
 671             }
 672             else {
 673                 System.out.print("1");
 674                 System.exit(0);
 675             }
 676         }
 677         else if(d.straight_line(e,f)){
 678             if(ef.xiangjiao2(ac)){
 679                 Triangle C=new Triangle(a,ef.getjiaodian(ac),d);
 680                 Triangle D=new Triangle(ef.getjiaodian(ac),c,d);
 681                 Double s1=C.get_area();
 682                 Double s2= D.get_area();
 683                 C.output(s1,s2);}
 684             else {
 685                 System.out.print("1");
 686                 System.exit(0);
 687             }
 688         }
 689         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(cd)){
 690             Triangle C=new Triangle(ef.getjiaodian(ac),c,ef.getjiaodian(cd));
 691             Double s1=C.get_area();
 692             Double s2=A.get_area()-s1;
 693             C.output(s1,s2);
 694         }
 695         else if(ef.xiangjiao2(ac)&& ef.xiangjiao2(ad)){
 696             Triangle C=new Triangle(a,ef.getjiaodian(ac),ef.getjiaodian(ad));
 697             Double s1=C.get_area();
 698             Double s2=A.get_area()-s1;
 699             C.output(s1,s2);
 700         }
 701         else if(ef.xiangjiao2(ad)&& ef.xiangjiao2(cd)){
 702             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
 703             Double s1=C.get_area();
 704             Double s2=A.get_area()-s1;
 705             C.output(s1,s2);
 706         }
 707     }
 708 }
 709  class Quadrangle {
 710     Line ab;
 711     Line bc;
 712     Line cd;
 713     Line ad;
 714     Point a;Point b;Point c;Point d;
 715     Quadrangle(Line ab,Line bc,Line cd,Line ad)
 716     {
 717         this.ab=ab;
 718         this.bc=bc;
 719         this.cd=cd;
 720         this.ad=ad;
 721     }
 722     Quadrangle(Point a,Point b,Point c,Point d)
 723     {
 724         this.a=a;this.b=b;this.c=c;this.d=d;
 725         Line ab = new Line(a, b);
 726         Line bc = new Line(b, c);
 727         Line cd = new Line(c, d);
 728         Line ad = new Line(a, d);
 729         this.ab=ab;
 730         this.bc=bc;
 731         this.cd=cd;
 732         this.ad=ad;
 733     }
 734     boolean is_px_sibianxing()
 735     {
 736         return this.ab.parallel(cd)&&this.bc.parallel(ad);
 737     }
 738     boolean is_zf_sibianxing()
 739     {
 740         return this.is_px_sibianxing()&&(Objects.equals(this.ab.length, this.bc.length))&&this.ab.is_cz(bc);
 741     }
 742     boolean is_lx_sibianxing()
 743     {
 744         return this.is_px_sibianxing()&&(Objects.equals(this.ab.length, this.bc.length));
 745     }
 746     boolean is_jx_sibianxing()
 747     {
 748         return this.is_px_sibianxing()&&this.ab.is_cz(bc);
 749     }
 750     void what_Quadrangle()
 751     {
 752         if(this.is_zf_sibianxing()){
 753             System.out.print("true true true");
 754             System.exit(0);
 755         }
 756         else if(this.is_lx_sibianxing()){
 757             System.out.print("true false false");
 758             System.exit(0);
 759         }
 760         else if(this.is_jx_sibianxing()){
 761             System.out.print("false true false");
 762             System.exit(0);
 763         }
 764         else{
 765             System.out.print("false false false");
 766             System.exit(0);
 767         }
 768     }
 769     boolean tu_sibianxing(Point p1,Point p2,Point p3,Point p4)
 770     {
 771         Double t1 = (p4.x-p1.x)*(p2.y-p1.y)-(p4.y-p1.y)*(p2.x-p1.x);
 772         Double t2 = (p1.x-p2.x)*(p3.y-p2.y)-(p1.y-p2.y)*(p3.x-p2.x);
 773         Double t3 = (p2.x-p3.x)*(p4.y-p3.y)-(p2.y-p3.y)*(p4.x-p3.x);
 774         Double t4 = (p3.x-p4.x)*(p1.y-p4.y)-(p3.y-p4.y)*(p1.x-p4.x);
 775         return t1*t2*t3*t4>=0;
 776     }
 777     Double get_zc()
 778     {
 779         return this.ab.length+this.bc.length+ad.length+this.cd.length;
 780     }
 781     Double get_area(Line ac,Line bd)
 782     {
 783         Triangle a=new Triangle(this.ab,this.bc,ac);
 784         Triangle b=new Triangle(this.cd,this.ad,ac);
 785         Triangle c=new Triangle(this.ab,this.ad,bd);
 786         Triangle d=new Triangle(this.bc,this.cd,bd);
 787         if(this.tu_sibianxing(this.ab.p1,this.ab.p2,this.cd.p1,this.cd.p2))
 788             return c.get_area()+d.get_area();
 789         else {
 790             if (Objects.equals(c.get_area(), d.get_area()))
 791                 return Math.abs(a.get_area() - b.get_area());
 792             else
 793                 return Math.abs(c.get_area() - d.get_area());
 794         }
 795     }
 796     void output(Double s1,Double s2)
 797     {
 798         if(s1<=s2){
 799             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
 800             System.exit(0);
 801         }
 802         else {
 803             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
 804             System.exit(0);
 805         }
 806     }
 807     Double get_area()
 808     {
 809 //        s=1/2*[(x1*y2-x2*y1)+(x2*y3-x3*y2)+...... +(Xk*Yk+1-Xk+1*Yk)+...+(Xn*y1-x1*Yn) ]
 810         double s=0;
 811         s=(this.a.x*this.b.y-this.b.x*this.a.y)+(this.b.x*this.c.y-this.c.x*this.b.y)+(this.c.x*this.d.y-this.d.x*this.c.y)+(this.d.x*this.a.y-this.a.x*this.d.y);
 812         return Math.abs(s/2);
 813     }
 814     boolean in_it(Point e,Point a,Point b,Point c,Point d)
 815     {
 816         Line ab=new Line(a,b);
 817         Line bc=new Line(b,c);
 818         Line cd=new Line(c,d);
 819         Line ad=new Line(a,d);
 820         Line ea=new Line(e,a);
 821         Line eb=new Line(e,b);
 822         Line ec=new Line(e,c);
 823         Line ed=new Line(e,d);
 824         Line ac=new Line(a,c);
 825         Line bd=new Line(b,d);
 826         Triangle A=new Triangle(ea,eb,ab);
 827         Triangle B=new Triangle(eb,ec,bc);
 828         Triangle C=new Triangle(ec,ed,cd);
 829         Triangle D=new Triangle(ea,ed,ad);
 830         if(Math.abs(A.get_area()+B.get_area()+C.get_area()+D.get_area()-this.get_area(ac,bd))<0.1)
 831             return true;
 832         else
 833             return false;
 834     }
 835     void qiege_sibianxing(Point e,Point f, Point a, Point b, Point c, Point d)
 836     {
 837         Line ab = new Line(a, b);
 838         Line bc = new Line(b, c);
 839         Line cd = new Line(c, d);
 840         Line ad = new Line(a, d);
 841         Line ef=new Line(e,f);
 842         Line ac=new Line(a,c);
 843         Line bd=new Line(b,d);
 844         Quadrangle A=new Quadrangle(a,b,c,d);
 845         if(ef.is_sameline(ab)||ef.is_sameline(bc)||ef.is_sameline(cd)||ef.is_sameline(ad)){
 846             System.out.print("The line is coincide with one of the lines");
 847             System.exit(0);
 848         }
 849         else if(ef.is_sameline(ac)){
 850             Triangle C=new Triangle(ab,bc,ac);
 851             Triangle D=new Triangle(cd,ad,ac);
 852             Double s1=C.get_area();
 853             Double s2= D.get_area();
 854             C.output(s1,s2);
 855         }
 856         else if(ef.is_sameline(bd)){
 857             Triangle C=new Triangle(ab,ad,bd);
 858             Triangle D=new Triangle(bc,cd,bd);
 859             Double s1=C.get_area();
 860             Double s2= D.get_area();
 861             C.output(s1,s2);
 862         }
 863         else if(ef.xiangjiao2(ab)&& ef.xiangjiao2(cd)){
 864             Quadrangle C=new Quadrangle(a,ef.getjiaodian(ab),ef.getjiaodian(cd),d);
 865             Quadrangle D=new Quadrangle(ef.getjiaodian(ab),b,c,ef.getjiaodian(cd));
 866             Double s1=C.get_area();
 867             Double s2= D.get_area();
 868             C.output(s1,s2);
 869         }
 870         else if(ef.xiangjiao2(bc)&& ef.xiangjiao2(ad)){
 871             Quadrangle C=new Quadrangle(a,b,ef.getjiaodian(bc),ef.getjiaodian(ad));
 872             Quadrangle D=new Quadrangle(ef.getjiaodian(bc),c,d,ef.getjiaodian(ad));
 873             Double s1=C.get_area();
 874             Double s2= D.get_area();
 875             C.output(s1,s2);
 876         }
 877         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(bc)){
 878             Triangle C=new Triangle(ef.getjiaodian(ab),b,ef.getjiaodian(bc));
 879             Double s1=C.get_area();
 880             Double s2=Math.abs(A.get_area()- C.get_area());
 881             C.output(s1,s2);
 882         }
 883         else if(ef.xiangjiao2(bc)&&ef.xiangjiao2(cd)){
 884             Triangle C=new Triangle(ef.getjiaodian(bc),c,ef.getjiaodian(cd));
 885             Double s1=C.get_area();
 886             Double s2=Math.abs(A.get_area()- C.get_area());
 887             C.output(s1,s2);
 888         }
 889         else if(ef.xiangjiao2(cd)&&ef.xiangjiao2(ad)){
 890             Triangle C=new Triangle(ef.getjiaodian(cd),d,ef.getjiaodian(ad));
 891             Double s1=C.get_area();
 892             Double s2=Math.abs(A.get_area()- C.get_area());
 893             C.output(s1,s2);
 894         }
 895         else if(ef.xiangjiao2(ab)&&ef.xiangjiao2(ad)){
 896             Triangle C=new Triangle(a,ef.getjiaodian(ab),ef.getjiaodian(ad));
 897             Double s1=C.get_area();
 898             Double s2=Math.abs(A.get_area()- C.get_area());
 899             C.output(s1,s2);
 900         }
 901         else if(ef.isin_line(a)&&ef.xiangjiao2(bc)){
 902             Triangle C=new Triangle(a,b,ef.getjiaodian(bc));
 903             Double s1=C.get_area();
 904             Double s2=Math.abs(A.get_area()- C.get_area());
 905             C.output(s1,s2);
 906         }
 907         else if(ef.isin_line(a)&&ef.xiangjiao2(cd)){
 908             Triangle C=new Triangle(a,ef.getjiaodian(cd),d);
 909             Double s1=C.get_area();
 910             Double s2=Math.abs(A.get_area()- C.get_area());
 911             C.output(s1,s2);
 912         }
 913         else if(ef.isin_line(b)&&ef.xiangjiao2(cd)){
 914             Triangle C=new Triangle(b,c,ef.getjiaodian(cd));
 915             Double s1=C.get_area();
 916             Double s2=Math.abs(A.get_area()- C.get_area());
 917             C.output(s1,s2);
 918         }
 919         else if(ef.isin_line(b)&&ef.xiangjiao2(ad)){
 920             Triangle C=new Triangle(a,b,ef.getjiaodian(ad));
 921             Double s1=C.get_area();
 922             Double s2=Math.abs(A.get_area()- C.get_area());
 923             C.output(s1,s2);
 924         }
 925         else if(ef.isin_line(c)&&ef.xiangjiao2(ab)){
 926             Triangle C=new Triangle(ef.getjiaodian(ab),b,c);
 927             Double s1=C.get_area();
 928             Double s2=Math.abs(A.get_area()- C.get_area());
 929             C.output(s1,s2);
 930         }
 931         else if(ef.isin_line(c)&&ef.xiangjiao2(ad)){
 932             Triangle C=new Triangle(c,d,ef.getjiaodian(ad));
 933             Double s1=C.get_area();
 934             Double s2=Math.abs(A.get_area()- C.get_area());
 935             C.output(s1,s2);
 936         }
 937         else if(ef.isin_line(d)&&ef.xiangjiao2(bc)){
 938             Triangle C=new Triangle(ef.getjiaodian(bc),c,d);
 939             Double s1=C.get_area();
 940             Double s2=Math.abs(A.get_area()- C.get_area());
 941             C.output(s1,s2);
 942         }
 943         else if(ef.isin_line(d)&&ef.xiangjiao2(ab)){
 944             Triangle C=new Triangle(a,ef.getjiaodian(ab),d);
 945             Double s1=C.get_area();
 946             Double s2=Math.abs(A.get_area()- C.get_area());
 947             C.output(s1,s2);
 948         }
 949         else
 950         {
 951             System.out.print("1");
 952             System.exit(0);
 953         }
 954     }
 955 
 956 
 957 }
 958  class Pentagon {
 959     Line ab;Line bc;Line cd;Line de;Line ae;
 960     Point a;Point b;Point c;Point d;Point e;
 961     Pentagon(Point a,Point b,Point c,Point d,Point e)
 962     {
 963         this.a=a;this.b=b;this.c=c;this.d=d;this.e=e;
 964         Line ab = new Line(a, b);
 965         Line bc = new Line(b, c);
 966         Line cd = new Line(c, d);
 967         Line de = new Line(e, d);
 968         Line ae = new Line(a,e);
 969         this.ab=ab;
 970         this.bc=bc;
 971         this.cd=cd;
 972         this.de=de;
 973         this.ae=ae;
 974     }
 975     boolean tu_Pentagon(Point p1,Point p2,Point p3,Point p4,Point p5)
 976     {
 977         Double t1 = (p5.x-p1.x)*(p2.y-p1.y)-(p5.y-p1.y)*(p2.x-p1.x);
 978         Double t2 = (p1.x-p2.x)*(p3.y-p2.y)-(p1.y-p2.y)*(p3.x-p2.x);
 979         Double t3 = (p2.x-p3.x)*(p4.y-p3.y)-(p2.y-p3.y)*(p4.x-p3.x);
 980         Double t4 = (p3.x-p4.x)*(p5.y-p4.y)-(p3.y-p4.y)*(p5.x-p4.x);
 981         Double t5 = (p4.x-p5.x)*(p1.y-p5.y)-(p4.y-p5.y)*(p1.x-p5.x);
 982         return t1*t2*t3*t4*t5<=0;
 983     }
 984     Double get_zc()
 985     {
 986         return this.ab.length+this.bc.length+cd.length+this.de.length+this.ae.length;
 987     }
 988     Double get_area()
 989     {
 990 //        s=1/2*[(x1*y2-x2*y1)+(x2*y3-x3*y2)+...... +(Xk*Yk+1-Xk+1*Yk)+...+(Xn*y1-x1*Yn) ]
 991         double s=0;
 992         s=(this.a.x*this.b.y-this.b.x*this.a.y)+(this.b.x*this.c.y-this.c.x*this.b.y)+
 993           (this.c.x*this.d.y-this.d.x*this.c.y)+(this.d.x*this.e.y-this.e.x*this.d.y)+(this.e.x*this.a.y-this.a.x*this.e.y);
 994         return Math.abs(s/2);
 995     }
 996     void output(Double s1,Double s2)
 997     {
 998         if(s1<=s2){
 999             System.out.print("2 "+Main.output(s1)+" "+Main.output(s2));
1000             System.exit(0);
1001         }
1002         else {
1003             System.out.print("2 "+Main.output(s2)+" "+Main.output(s1));
1004             System.exit(0);
1005         }
1006     }
1007     void qiege_pentagon(Point f,Point g,Point a,Point b,Point c,Point d,Point e)
1008     {
1009         Line ab = new Line(a, b);
1010         Line bc = new Line(b, c);
1011         Line cd = new Line(c, d);
1012         Line de = new Line(d, e);
1013         Line ae = new Line(a, e);
1014         Line fg = new Line(f, g);
1015         Line ac = new Line(a, c);
1016         Line ad = new Line(a, d);
1017         Line bd = new Line(b, d);
1018         Line be = new Line(b, e);
1019         Line ce = new Line(c, e);
1020         Pentagon A=new Pentagon(a,b,c,d,e);
1021         if(fg.is_sameline(ab)||fg.is_sameline(bc)||fg.is_sameline(cd)||fg.is_sameline(de)||fg.is_sameline(ae)){
1022             System.out.print("The line is coincide with one of the lines");
1023             System.exit(0);
1024         }
1025         else if(fg.is_sameline(ac)){
1026             Triangle C=new Triangle(a,b,c);
1027             Double s1=C.get_area();
1028             Double s2=A.get_area()-s1;
1029             C.output(s1,s2);
1030         }
1031         else if(fg.is_sameline(ad)){
1032             Triangle C=new Triangle(a,d,e);
1033             Double s1=C.get_area();
1034             Double s2=A.get_area()-s1;
1035             C.output(s1,s2);
1036         }
1037         else if(fg.is_sameline(bd)){
1038             Triangle C=new Triangle(b,c,d);
1039             Double s1=C.get_area();
1040             Double s2=A.get_area()-s1;
1041             C.output(s1,s2);
1042         }
1043         else if(fg.is_sameline(be)){
1044             Triangle C=new Triangle(a,b,e);
1045             Double s1=C.get_area();
1046             Double s2=A.get_area()-s1;
1047             C.output(s1,s2);
1048         }
1049         else if(fg.is_sameline(ce)){
1050             Triangle C=new Triangle(c,d,e);
1051             Double s1=C.get_area();
1052             Double s2=A.get_area()-s1;
1053             C.output(s1,s2);
1054         }
1055         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(bc)){
1056             Triangle C=new Triangle(fg.getjiaodian(ab),b,fg.getjiaodian(bc));
1057             Double s1=C.get_area();
1058             Double s2=A.get_area()-s1;
1059             C.output(s1,s2);
1060         }
1061         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(cd)){
1062             Triangle C=new Triangle(fg.getjiaodian(bc),c,fg.getjiaodian(cd));
1063             Double s1=C.get_area();
1064             Double s2=A.get_area()-s1;
1065             C.output(s1,s2);
1066         }
1067         else if(fg.xiangjiao2(cd)&&fg.xiangjiao2(de)){
1068             Triangle C=new Triangle(fg.getjiaodian(cd),d,fg.getjiaodian(de));
1069             Double s1=C.get_area();
1070             Double s2=A.get_area()-s1;
1071             C.output(s1,s2);
1072         }
1073         else if(fg.xiangjiao2(de)&&fg.xiangjiao2(ae)){
1074             Triangle C=new Triangle(fg.getjiaodian(de),e,fg.getjiaodian(ae));
1075             Double s1=C.get_area();
1076             Double s2=A.get_area()-s1;
1077             C.output(s1,s2);
1078         }
1079         else if(fg.xiangjiao2(ae)&&fg.xiangjiao2(ab)){
1080             Triangle C=new Triangle(fg.getjiaodian(ae),a,fg.getjiaodian(ab));
1081             Double s1=C.get_area();
1082             Double s2=A.get_area()-s1;
1083             C.output(s1,s2);
1084         }
1085         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(cd)){
1086             Quadrangle C=new Quadrangle(fg.getjiaodian(ab),b,c,fg.getjiaodian(cd));
1087             Double s1=C.get_area();
1088             Double s2=A.get_area()-s1;
1089             C.output(s1,s2);
1090         }
1091         else if(fg.xiangjiao2(ab)&&fg.xiangjiao2(de)){
1092             Quadrangle C=new Quadrangle(a,fg.getjiaodian(ab),fg.getjiaodian(de),e);
1093             Double s1=C.get_area();
1094             Double s2=A.get_area()-s1;
1095             C.output(s1,s2);
1096         }
1097         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(de)){
1098             Quadrangle C=new Quadrangle(fg.getjiaodian(bc),c,d,fg.getjiaodian(de));
1099             Double s1=C.get_area();
1100             Double s2=A.get_area()-s1;
1101             C.output(s1,s2);
1102         }
1103         else if(fg.xiangjiao2(bc)&&fg.xiangjiao2(ae)){
1104             Quadrangle C=new Quadrangle(b,fg.getjiaodian(bc),fg.getjiaodian(ae),a);
1105             Double s1=C.get_area();
1106             Double s2=A.get_area()-s1;
1107             C.output(s1,s2);
1108         }
1109         else if(fg.xiangjiao2(cd)&&fg.xiangjiao2(ae)){
1110             Quadrangle C=new Quadrangle(fg.getjiaodian(cd),d,e,fg.getjiaodian(ae));
1111             Double s1=C.get_area();
1112             Double s2=A.get_area()-s1;
1113             C.output(s1,s2);
1114         }
1115         else
1116         {
1117             System.out.print("1");
1118             System.exit(0);
1119         }
1120     }
1121      boolean in_it(Point f,Point a,Point b,Point c,Point d,Point e)
1122     {
1123         Line ab=new Line(a,b);
1124         Line bc=new Line(b,c);
1125         Line cd=new Line(c,d);
1126         Line de=new Line(d,e);
1127         Line ae=new Line(a,e);
1128         Line fa=new Line(e,a);
1129         Line fb=new Line(e,b);
1130         Line fc=new Line(e,c);
1131         Line fd=new Line(e,d);
1132         Line fe=new Line(f,e);
1133         Triangle A=new Triangle(fa,fb,ab);
1134         Triangle B=new Triangle(fb,fc,bc);
1135         Triangle C=new Triangle(fc,fd,cd);
1136         Triangle D=new Triangle(fd,fe,de);
1137         Triangle E=new Triangle(fe,fa,ae);
1138         if(Math.abs(A.getarea2(a,b,f)+B.getarea2(b,c,f)+C.getarea2(c,d,f)+D.getarea2(d,e,f)+E.getarea2(a,e,f)-this.get_area())<0.001)
1139             return true;
1140         else
1141             return false;
1142     }
1143     boolean on_it(Point f,Point a,Point b,Point c,Point d,Point e)
1144     {
1145         return f.on_line(a, b) || f.on_line(b, c) || f.on_line(c, d) || f.on_line(d, e) || f.on_line(a, e);
1146     }
1147      boolean out_it(Point f,Point a,Point b,Point c,Point d,Point e)
1148     {
1149         Pentagon A=new Pentagon(a,b,c,d,e);
1150         return !A.in_it(f, a, b, c, d, e) && !A.on_it(f, a, b, c, d, e);
1151     }
1152      boolean not_init(Pentagon B)
1153     {
1154         return (this.on_it(this.a,B.a,B.b,B.c,B.d,B.e)||this.out_it(this.a,B.a,B.b,B.c,B.d,B.e))&&(this.on_it(this.a,B.a,B.b,B.c,B.d,B.e)||this.out_it(this.b,B.a,B.b,B.c,B.d,B.e))&&
1155                 (this.on_it(this.a,B.a,B.b,B.c,B.d,B.e)||this.out_it(this.c,B.a,B.b,B.c,B.d,B.e))&&
1156                 (this.on_it(this.a,B.a,B.b,B.c,B.d,B.e)||this.out_it(this.d,B.a,B.b,B.c,B.d,B.e))&&(this.on_it(this.a,B.a,B.b,B.c,B.d,B.e)||this.out_it(this.e,B.a,B.b,B.c,B.d,B.e));
1157     }
1158     boolean same_line(Line p)
1159     {
1160         if(p.Same(this.ab)||p.Same(this.bc)||p.Same(this.cd)||p.Same(this.de)||p.Same(this.ae))
1161             return true;
1162         else
1163             return false;
1164     }
1165     boolean same_point(Point a)
1166     {
1167         if(a.Same(this.a)||a.Same(this.b)||a.Same(this.c)||a.Same(this.d)||a.Same(this.e))
1168             return true;
1169         else
1170             return false;
1171     }
1172      boolean jiaocha(Line p)
1173     {
1174         if(p.xiangjiao(p,this.ab)||p.xiangjiao(p,this.bc)||p.xiangjiao(p,this.cd)||p.xiangjiao(p,this.de)||p.xiangjiao(p,this.ae))
1175             return true;
1176         else
1177             return false;
1178     }
1179     boolean fenli(Pentagon B)
1180     {
1181         if(this.out_it(this.a,B.a,B.b,B.c,B.d,B.e)&&this.out_it(this.b,B.a,B.b,B.c,B.d,B.e)&&this.out_it(this.c,B.a,B.b,B.c,B.d,B.e)&&
1182                 this.out_it(this.d,B.a,B.b,B.c,B.d,B.e)&&this.out_it(this.e,B.a,B.b,B.c,B.d,B.e))
1183             return true;
1184         else
1185             return false;
1186     }
1187     boolean coincides(Pentagon B)
1188     {
1189         if(this.same_line(B.ab)&&this.same_line(B.bc)&&this.same_line(B.cd)&&this.same_line(B.de)&&this.same_line(B.ae))
1190             return true;
1191         else
1192             return false;
1193     }
1194     boolean connect(Pentagon B)
1195     {
1196         if((this.same_point(B.a)||this.same_point(B.b)||this.same_point(B.c)||this.same_point(B.d)||this.same_point(B.e)||
1197         this.same_line(B.ab)||this.same_line(B.bc)||this.same_line(B.cd)||this.same_line(B.de)||this.same_line(B.ae))&&this.not_init(B))
1198             return true;
1199         else
1200             return false;
1201     }
1202     boolean inside(Pentagon B)
1203     {
1204         if(!this.out_it(this.a,B.a,B.b,B.c,B.d,B.e)&&!this.out_it(this.b,B.a,B.b,B.c,B.d,B.e)&&!this.out_it(this.c,B.a,B.b,B.c,B.d,B.e)&&
1205                 !this.out_it(this.d,B.a,B.b,B.c,B.d,B.e)&&!this.out_it(this.e,B.a,B.b,B.c,B.d,B.e))
1206             return true;
1207         else
1208             return false;
1209     }
1210      boolean interlaced(Pentagon B)
1211     {
1212         if((this.jiaocha(B.ab)||this.jiaocha(B.bc)||this.jiaocha(B.cd)||this.jiaocha(B.de)||this.jiaocha(B.ae))&&
1213                 !(this.same_point(B.a)||this.same_point(B.b)||this.same_point(B.c)||this.same_point(B.d)||this.same_point(B.e)))
1214             return true;
1215         if((this.same_point(B.a)&&(this.same_point(B.c)||this.same_point(B.d)))||(this.same_point(B.b)&&(this.same_point(B.d)||this.same_point(B.e)))||(this.same_point(B.c)&&this.same_point(B.e)))
1216             return true;
1217         else
1218             return false;
1219     }
1220 //    boolean contains(Pentagon B)
1221 //    {
1222 //        if(!B.out_it(B.a,this.a,this.b,this.c,this.d,this.e)&&!B.out_it(B.b,this.a,this.b,this.c,this.d,this.e)&&!this.out_it(this.c,B.a,B.b,B.c,B.d,B.e)&&
1223 //                !this.out_it(this.d,B.a,B.b,B.c,B.d,B.e)&&!this.out_it(this.e,B.a,B.b,B.c,B.d,B.e))
1224 //            return true;
1225 //        else
1226 //            return false;
1227 //    }
1228     void what_relate(Pentagon A,Pentagon B)
1229     {
1230         String[] s={"pentagon", "quadrilateral", "triangle"};
1231         if(A.fenli(B))
1232         {
1233             System.out.print("no overlapping area between the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" and the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1234         }
1235         else if(A.coincides(B))
1236         {
1237             System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" coincides with the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1238         }
1239         else if(A.inside(B))
1240         {
1241         System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" is inside the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1242         }
1243         else if(B.inside(A))
1244         {
1245             System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" contains the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1246         }
1247         else if(A.interlaced(B))
1248             System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" is interlaced with the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1249         else if(A.connect(B))
1250         {
1251             System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" is connected to the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1252         }
1253         else
1254             System.out.print("the previous "+s[A.a.what_polygon(A.a,A.b,A.c,A.d,A.e)-1]+" is interlaced with the following "+s[A.a.what_polygon(B.a,B.b,B.c,B.d,B.e)-1]);
1255 
1256     }
1257 }
第二题代码

 

<3>期中考试

7-1 点与线(类设计)

  • 设计一个类表示平面直角坐标系上的点Point,私有属性分别为横坐标x与纵坐标y,数据类型均为实型数,除构造方法以及属性的getter与setter方法外,定义一个用于显示信息的方法display(),用来输出该坐标点的坐标信息,格式如下:(x,y),数值保留两位小数。为简化题目,其中,坐标点的取值范围设定为(0,200]。若输入有误,系统则直接输出Wrong Format

  • 设计一个类表示平面直角坐标系上的线Line,私有属性除了标识线段两端的点point1、point2外,还有一个字符串类型的color,用于表示该线段的颜色,同样,除构造方法以及属性的getter与setter方法外,定义一个用于计算该线段长度的方法getDistance(),还有一个用于显示信息的方法display(),用来输出线段的相关信息,输出格式如下:

      ```
          The line's color is:颜色值
          The line's begin point's Coordinate is:
          (x1,y1)
          The line's end point's Coordinate is:
          (x2,y2)
          The line's length is:长度值
      ```

    其中,所有数值均保留两位小数,建议可用String.format("%.2f", data)方法。

      设计类图如下图所示。

1641304523(1).jpg

** 题目要求:在主方法中定义一条线段对象,从键盘输入该线段的起点坐标与终点坐标以及颜色,然后调用该线段的display()方法进行输出。**

大概思路:

通过老师所给出的类图将点类和线类构造出来,并将相应的属性和方法写完整,最后输出相应的结果。

点类:

 线类:

 Main类:

 

 

  1 import java.math.BigDecimal;
  2 import java.math.RoundingMode;
  3 import java.util.Scanner;
  4 
  5 public class Main {
  6     public static Double output(Double data)
  7     {
  8         double a = data;
  9 
 10         BigDecimal bigDecimal = new BigDecimal(a);
 11         double res = bigDecimal.setScale(2, RoundingMode.HALF_UP).doubleValue();
 12         return res;
 13     }
 14     public static void main(String[] args) {
 15         Scanner in = new Scanner(System.in);
 16         Double x1=in.nextDouble();
 17         Double y1=in.nextDouble();
 18         Double x2=in.nextDouble();
 19         Double y2=in.nextDouble();
 20         if((x1<=0||x1>200)||(y1<=0||y1>200)||(x2<=0||x2>200)||(y2<=0||y2>200))
 21         {
 22             System.out.print("Wrong Format");
 23             return;
 24         }
 25         Point p1=new Point(x1,y1);
 26         Point p2=new Point(x2,y2);
 27         Line l=new Line(p1,p2,in.next());
 28         l.display();
 29     }
 30 }
 31  class Point {
 32     double x,y,distance;
 33     Point(String x,String y)
 34     {
 35         this.x=Double.valueOf(x);
 36         this.y=Double.valueOf(y);
 37     }
 38     Point(Double x,Double y)
 39     {
 40         this.x=x;
 41         this.y=y;
 42     }
 43     Double Distance(Point b)//计算两点间的距离
 44     {
 45         distance=Math.sqrt((this.x-b.x)*(this.x-b.x)+(this.y-b.y)*(this.y-b.y));
 46         return distance;
 47     }
 48     Double getX()
 49     {
 50         return this.x;
 51     }
 52     void setX(Double X)
 53     {
 54         this.x=X;
 55     }
 56     Double getY()
 57     {
 58         return this.y;
 59     }
 60     void setY(Double Y)
 61     {
 62         this.y=Y;
 63     }
 64     void display()
 65     {
 66         System.out.print("("+String.format("%.2f",this.getX())+","+String.format("%.2f",this.getY())+")");
 67     }
 68 
 69 
 70 }
 71 
 72  class Line {
 73     Point p1;
 74     Point p2;
 75     String color;
 76     public Line(Point a,Point b,String color)
 77     {
 78         this.p1=a;
 79         this.p2=b;
 80         this.color=color;
 81     }
 82 
 83     Double getDistance()//计算两点间的距离
 84     {
 85         Double distance=Math.sqrt((this.p1.x-this.p2.x)*(this.p1.x-this.p2.x)+(this.p1.y-this.p2.y)*(this.p1.y-this.p2.y));
 86         return distance;
 87     }
 88     void display()
 89     {
 90         System.out.println("The line's color is:"+this.color);
 91         System.out.println("The line's begin point's Coordinate is:");
 92         this.p1.display();
 93         System.out.println();
 94         System.out.println("The line's end point's Coordinate is:");
 95         this.p2.display();
 96         System.out.println();
 97         System.out.println("The line's length is:"+Main.output(this.getDistance()));
 98     }
 99 
100 
101 
102 }
View Code

 

7-2 点线面问题重构(继承与多态)

在“点与线(类设计)”题目基础上,对题目的类设计进行重构,以实现继承与多态的技术性需求。

  • 对题目中的点Point类和线Line类进行进一步抽象,定义一个两个类的共同父类Element(抽象类),将display()方法在该方法中进行声明(抽象方法),将Point类和Line类作为该类的子类。
  • 再定义一个Element类的子类面Plane,该类只有一个私有属性颜色color,除了构造方法和属性的getter、setter方法外,display()方法用于输出面的颜色,输出格式如下:The Plane's color is:颜色
  • 在主方法内,定义两个Point(线段的起点和终点)对象、一个Line对象和一个Plane对象,依次从键盘输入两个Point对象的起点、终点坐标和颜色值(Line对象和Plane对象颜色相同),然后定义一个Element类的引用,分别使用该引用调用以上四个对象的display()方法,从而实现多态特性。示例代码如下:
          element = p1;//起点Point
          element.display();
          
          element = p2;//终点Point
          element.display();
          
          element = line;//线段
          element.display();
          
          element = plane;//面
          element.display();
    
      类结构如下图所示。

1641340607(1).jpg

其中,所有数值均保留两位小数,建议可用String.format("%.2f", data)方法。

大概思路:

在第一题的基础上再定义一个抽象的父类,根据题目给出的类图将类写好。

 

 

 

  1 import java.math.BigDecimal;
  2 import java.math.RoundingMode;
  3 import java.util.Scanner;
  4 public class Main
  5 {
  6     public static Double output(Double data)
  7     {
  8         double a = data;
  9 
 10         BigDecimal bigDecimal = new BigDecimal(a);
 11         double res = bigDecimal.setScale(2, RoundingMode.HALF_UP).doubleValue();
 12         return res;
 13     }
 14     public static void main(String[] args)
 15     {
 16         Scanner sc=new Scanner(System.in);
 17         double x1,x2,y1,y2;
 18         int num;
 19         int index;
 20         String color;
 21         x1=sc.nextDouble();
 22         y1=sc.nextDouble();
 23         x2=sc.nextDouble();
 24         y2=sc.nextDouble();
 25         if((x1<=0||x1>200)||(y1<=0||y1>200)||(x2<=0||x2>200)||(y2<=0||y2>200))
 26         {
 27             System.out.print("Wrong Format");
 28             return;
 29         }
 30             Point point1=new Point(x1,y1);
 31             Point point2=new Point(x2,y2);
 32             color=sc.next();
 33             Line line1=new Line(point1,point2,color);
 34             Plane plane=new Plane(color);
 35             Element element;
 36             element = point1;
 37             element.display();
 38 
 39             element = point2;
 40             element.display();
 41 
 42             element = line1;
 43             element.display();
 44 
 45             element = plane;
 46             element.display();
 47     }
 48 }
 49 abstract class Element
 50 {
 51     public abstract void display();
 52 }
 53 class Line extends Element
 54 {
 55     private Point p1,p2;
 56     private String color;
 57 
 58     public Line() {
 59     }
 60 
 61     public Line(Point point1, Point point2, String color) {
 62         this.p1 = point1;
 63         this.p2 = point2;
 64         this.color = color;
 65     }
 66 
 67     public Point getPoint1() {
 68         return p1;
 69     }
 70 
 71     public void setPoint1(Point point1) {
 72         this.p1 = point1;
 73     }
 74 
 75     public Point getPoint2() {
 76         return p2;
 77     }
 78 
 79     public void setPoint2(Point point2) {
 80         this.p2 = point2;
 81     }
 82 
 83     public String getColor() {
 84         return color;
 85     }
 86 
 87     public void setColor(String color) {
 88         this.color = color;
 89     }
 90 
 91     Double getDistance()//计算两点间的距离
 92     {
 93         Double distance=Math.sqrt((this.p1.getX() - this.p2.getX())*(this.p1.getX() - this.p2.getX())+(this.p1.getY() - this.p2.getY())*(this.p1.getY() - this.p2.getY()));
 94         return distance;
 95     }
 96     @Override
 97     public void display()
 98     {
 99         System.out.println("The line's color is:"+color);
100         System.out.println("The line's begin point's Coordinate is:");
101         p1.display();
102         System.out.println("The line's end point's Coordinate is:");
103         p2.display();
104         System.out.println("The line's length is:"+String.format("%.2f",getDistance()));
105     }
106 }
107 class Plane extends Element
108 {
109     private String color;
110 
111     public Plane() {
112     }
113     public Plane(String color) {
114         this.color = color;
115     }
116 
117     public String getColor() {
118         return color;
119     }
120 
121     public void setColor(String color) {
122         this.color = color;
123     }
124 
125     @Override
126     public void display()
127     {
128         System.out.println("The Plane's color is:"+color);
129     }
130 }
131 class Point extends Element
132 {
133     private double x,y;
134     public Point()
135     {
136     }
137     public Point(double x, double y)
138     {
139         this.x = x;
140         this.y = y;
141     }
142 
143     public double getX() {
144         return x;
145     }
146 
147     public void setX(double x) {
148         this.x = x;
149     }
150 
151     public double getY() {
152         return y;
153     }
154 
155     public void setY(double y) {
156         this.y = y;
157     }
158     public void display()
159     {
160         System.out.println("("+String.format("%.2f",this.x)+","+String.format("%.2f",this.y)+")");
161     }
162 }
View Code

 

7-3 点线面问题再重构(容器类)

在“点与线(继承与多态)”题目基础上,对题目的类设计进行重构,增加容器类保存点、线、面对象,并对该容器进行相应增、删、遍历操作。

  • 在原有类设计的基础上,增加一个GeometryObject容器类,其属性为ArrayList<Element>类型的对象(若不了解泛型,可以不使用<Element>
  • 增加该类的add()方法及remove(int index)方法,其功能分别为向容器中增加对象及删除第index - 1(ArrayList中index>=0)个对象
  • 在主方法中,用户循环输入要进行的操作(choice∈[0,4]),其含义如下:
    • 1:向容器中增加Point对象
    • 2:向容器中增加Line对象
    • 3:向容器中增加Plane对象
    • 4:删除容器中第index - 1个数据,若index数据非法,则无视此操作
    • 0:输入结束
    示例代码如下:
       choice = input.nextInt();
        while(choice != 0) {
            switch(choice) {
            case 1://insert Point object into list 
              ...
                break;
            case 2://insert Line object into list
                ...
                break;
            case 3://insert Plane object into list
                ...
                break;
            case 4://delete index - 1 object from list
                int index = input.nextInt();
                ...
            }
            choice = input.nextInt();
        }
    
      输入结束后,按容器中的对象顺序分别调用每个对象的display()方法进行输出。
    类图如下所示:

classdiagram.jpg

大概思路:

在原有类设计的基础上,增加一个GeometryObject容器类,将其属性补全,根据题目要求用arraylist逐步实现所需要的内容。

 

 

 

  1 import java.util.ArrayList;
  2 import java.util.Scanner;
  3 public class Main
  4 {
  5     public static void main(String[] args)
  6     {
  7         Scanner in=new Scanner(System.in);
  8         double x1,x2,y1,y2;
  9         int n;
 10         int index;
 11         String color;
 12         GeometryObject g=new GeometryObject();
 13         n=in.nextInt();
 14         while(n!=0)
 15         {
 16             switch(n)
 17             {
 18                 case 1:{
 19                     x1=in.nextDouble();
 20                     y1=in.nextDouble();
 21                     point p = new point(x1,y1);
 22                     g.add(p);
 23                 }
 24                 break;
 25                 case 2:{
 26                     x1=in.nextDouble();
 27                     y1=in.nextDouble();
 28                     point p1 = new point(x1,y1);
 29                     x2=in.nextDouble();
 30                     y2=in.nextDouble();
 31                     point p2 = new point(x2,y2);
 32                     color = in.next();
 33                     line l = new line(p1,p2,color);
 34                     g.add(l);
 35 
 36                 }
 37                 break;
 38                 case 3:
 39                 {
 40                     color = in.next();
 41                     Plane p = new Plane(color);
 42                     g.add(p);
 43                 }
 44                 break;
 45                 case 4:
 46                 {
 47                     index = in.nextInt();
 48                     if(g.getList().size()>=index)
 49                         g.remove(index-1);
 50                 }
 51                 break;
 52                 default:System.out.print("Wrong Format");
 53                     break;
 54             }
 55             n= in.nextInt();
 56         }
 57         ArrayList<Element> s = g.getList();
 58         for(int i=0;i<s.size();i++)
 59         {
 60             s.get(i).display();
 61         }
 62     }
 63 }
 64 abstract class Element
 65 {
 66     public abstract void display();
 67 }
 68 class GeometryObject
 69 {
 70     ArrayList<Element> list=new ArrayList<>();
 71 
 72     public GeometryObject()
 73     {
 74     }
 75 
 76     public GeometryObject(ArrayList<Element> list) {
 77         this.list = list;
 78     }
 79 
 80     public ArrayList<Element> getList() {
 81         return list;
 82     }
 83 
 84     public void setList(ArrayList<Element> list) {
 85         this.list = list;
 86     }
 87     public void add(Element e)
 88     {
 89         list.add(e);
 90     }
 91     public void remove(int n)
 92     {
 93         list.remove(n);
 94     }
 95 }
 96 class point extends Element
 97 {
 98     private double x,y;
 99     public point()
100     {
101     }
102     public point(double x, double y)
103     {
104         this.x = x;
105         this.y = y;
106     }
107 
108     public double getX() {
109         return x;
110     }
111 
112     public void setX(double x) {
113         this.x = x;
114     }
115 
116     public double getY() {
117         return y;
118     }
119 
120     public void setY(double y) {
121         this.y = y;
122     }
123     @Override
124     public void display()
125     {
126         System.out.println("("+String.format("%.2f",this.x)+","+String.format("%.2f",this.y)+")");
127     }
128 }
129 class line extends Element
130 {
131     private point p1,p2;
132     private String color;
133 
134     public line()
135     {
136     }
137 
138     public line(point point1, point point2, String color)
139     {
140         this.p1 = point1;
141         this.p2 = point2;
142         this.color = color;
143     }
144 
145     public point getPoint1() {
146         return p1;
147     }
148 
149     public void setPoint1(point point1) {
150         this.p1 = point1;
151     }
152 
153     public point getPoint2() {
154         return p2;
155     }
156 
157     public void setPoint2(point point2) {
158         this.p2 = point2;
159     }
160 
161     public String getColor() {
162         return color;
163     }
164 
165     public void setColor(String color) {
166         this.color = color;
167     }
168     Double getDistance()//计算两点间的距离
169     {
170         Double distance=Math.sqrt((this.p1.getX() - this.p2.getX())*(this.p1.getX() - this.p2.getX())+(this.p1.getY() - this.p2.getY())*(this.p1.getY() - this.p2.getY()));
171         return distance;
172     }
173     @Override
174     public void display()
175     {
176         System.out.println("The line's color is:"+color);
177         System.out.println("The line's begin point's Coordinate is:");
178         this.p1.display();
179         System.out.println("The line's end point's Coordinate is:");
180         this.p2.display();
181         System.out.println("The line's length is:"+String.format("%.2f",this.getDistance()));
182     }
183 }
184 class Plane extends Element
185 {
186     private String color;
187 
188     public Plane() {
189     }
190     public Plane(String color) {
191         this.color = color;
192     }
193 
194     public String getColor() {
195         return color;
196     }
197 
198     public void setColor(String color) {
199         this.color = color;
200     }
201 
202     @Override
203     public void display()
204     {
205         System.out.println("The Plane's color is:"+color);
206     }
207 }
View Code

 

三、踩坑心得

1.重构代码越早越好,后面写起来会更轻松,像我写第四次大作业的时候没有重构也勉强写完了,但到了第五次多边形的时候真的就写起来太复杂了。

2.在切割多边形的时候先把特殊情况考虑到,不然很容易就漏了个别的测试点。

像这个测试点就是输入的四个点中第一个和第三个点重合的情况,我开始是真的想不到啊。

 

3.在判断两个多边形的位置关系的时候,我先把其他的关系判断完之后将剩余的情况全部列入到交错的关系里面,这样做一些测试点会出现错误,因为一些交错的情况在前面被判断为了相邻的情况,所以我们在开始判断的时候就要把交错的特殊情况先判断出来。

 

 

4.抽象类可以有构造方法,接口中不能有构造方法。抽象类中可以有普通成员变量,接口中没有普通成员变量。抽象类中可以包含非抽象的普通方法,接口中的所有方法必须都是抽象的,不能有非抽象的普通方法。抽象类中的抽象方法的访问类型可以是public,protected和(默认类型,虽然eclipse下不报错,但应该也不行),但接口中的抽象方法只能是public类型的,并且默认即为public abstract类型。抽象类中可以包含静态方法,接口中不能包含静态方法。

5.抽象类和接口中都可以包含静态成员变量,抽象类中的静态成员变量的访问类型可以任意,但接口中定义的变量只能是public static final类型,并且默认即为public static final类型。一个类可以实现多个接口,但只能继承一个抽象类。

四、改进建议

1.越早重构代码越好,有一个多边形的父类,对后面的操作有很大的帮助,并且在原代码的基础上可以更轻松的添加其他东西。

2.减少代码的嵌套,将具体功能和判断写成详细的方法,包装起来,不要一个函数写一长串.

3.尽量将子类里相同的方法集合起来写在父类里面。

五、总结

   对于本阶段的三次题目集,我学会了用正则表达式来检查字符串是否正确,也学会了对代码进行调试,对类进行封装和简单的类的继承。关于继承(接口)学习的还有很多,抽象类可以有构造方法,接口中不能有构造方法。抽象类中可以有普通成员变量,接口中没有普通成员变量。抽象类中可以包含非抽象的普通方法,接口中的所有方法必须都是抽象的,不能有非抽象的普通方法。抽象类中的抽象方法的访问类型可以是public,protected和(默认类型,虽然eclipse下不报错,但应该也不行),但接口中的抽象方法只能是public类型的,并且默认即为public abstract类型。抽象类中可以包含静态方法,接口中不能包含静态方法。抽象类和接口中都可以包含静态成员变量,抽象类中的静态成员变量的访问类型可以任意,但接口中定义的变量只能是public static final类型,并且默认即为public static final类型。一个类可以实现多个接口,但只能继承一个抽象类。

 

标签:p2,p1,return,Point,Double,BLOG,Line
From: https://www.cnblogs.com/songwdnxjl/p/16832854.html

相关文章

  • Blog2:nchu-software-oop-2022-4+5+期中
    Blog2:nchu-software-oop-2022-4+5+期中一、前言两次大作业是关于四边形和五边形的相关操作,类似于之前的三角形,但由于图形边数的变化,难度大大增加。对数学知识的运用考察......
  • xxqJava-Blog2
    一、前言(1)题目集四之凸四边形的计算:此次的题目集基于第三次作业三角形的判断又做了很大的提升。(2)题目集五:凸五边形的计算,这次题目集两道题可以算是是一道题,我猜老师觉得......
  • BLOG-2
    1.前言pta第四次作业总共有3题,题量不是很多。其中,1、3题比较简单,第二题难度较大,第1题考察的正则表达式,第3题考察的是类的使用,第2题考查了关于四边形的算法,正则表达式以及......
  • JAVA题目集4、5及期中考试总结Blog
    一、前言题目集四:知识点:类的应用,正则表达式,面向对象思想,四边形的一些知识点。题量:适中。难度:比较难。题目集五:知识点:类的应用,面向对象的思想,正则表达式,五边形的有关......
  • Blog2-pta题目集4-5以及期中考试总结
    一、前言1.pta题目集4(凸四边形的计算)总结    本题题目难度比第三次的难度要更大,更为复杂,总共有三道题目,涉及到了正则表达式的使用,对于字符串的处理,类的涉及......
  • BLOG-2
    BLOG-2(1)前言:总结之前所涉及到的知识点、题量、难度等情况题目集4:知识点:类与对象、字符串方法调用、正则表达式  题量:多  难度:难题目集5:知识点:类与对......
  • blog_02
    第二次博客作业目录第二次博客作业1.前言2.设计与分析(1)题目集47-2点线形系列4-凸四边形的计算(2)题目集57-1点线形系列5-凸五边形的计算-1(3)题目集57-2点线形系......
  • 四边形,五边形以及期中考试总结性Blog
    Java大作业第二次阶段性总结前言继完成点线性系列三角形相关计算后,第四次和第五次大作业关于四边形和五边形的相关计算代码复杂度和难度提升较大,期中考试的三题对继承,多......
  • 基于.NetCore开发博客项目 StarBlog - (19) Markdown渲染方案探索
    前言笔者认为,一个博客网站,最核心的是阅读体验。在开发StarBlog的过程中,最耗时的恰恰也是文章的展示部分功能。最开始还没研究出来如何很好的使用后端渲染,所以只能先用Ed......
  • 面向对象程序设计第二次blog
    一、前言这几次的PTA的作业以及考试涉及到的知识点由面向对象中对数据的封装、继承以及多态,还有抽象类以及对象容器也涉及到一些,与此同时还有关于正则表达式的内容。......