Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes
, if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Input Specification:
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1
and N2
each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a
-z
} where 0-9 represent the decimal numbers 0-9, and a
-z
represent the decimal numbers 10-35. The last number radix
is the radix of N1
if tag
is 1, or of N2
if tag
is 2.
Output Specification:
For each test case, print in one line the radix of the other number so that the equation N1
= N2
is true. If the equation is impossible, print Impossible
. If the solution is not unique, output the smallest possible radix.
Sample Input 1:
6 110 1 10
Sample Output 1:
2
Sample Input 2:
1 ab 1 2
Sample Output 2:
Impossible
#include<bits/stdc++.h> #define ll long long using namespace std; //转化字符为数字 int toSet(char x){ if (x>='0'&&x<='9'){ return x-'0'; } else if(x>='a'&&x<='z'){ return x-'a'+10; } } //转化字符串为十进制数 ll toDecimal(string in,ll radix){ ll result=0; for(int i=0;i<in.size();++i){ result+=toSet(in[i])*pow(radix,in.size()-i-1); } return result; } //二分搜索 ll getRadix(ll head,ll tail,string in,ll d1){ if (head<=tail){ ll mid=(head+tail)/2; ll temp=toDecimal(in,mid); if (temp==d1){ return mid; } else if(temp<d1&&temp>0){ return getRadix(mid+1,tail,in,d1); } else if (temp>d1||temp<0){ return getRadix(head,mid-1,in,d1); } } return -1; } int main(){ int tag,radix; string n1,n2,temp; cin>>n1>>n2>>tag>>radix; if (tag==2){ temp=n1; n1=n2; n2=temp; } ll d1=toDecimal(n1,radix); //定位最小进制 int mmax=-1; for (int i=0;i<n2.size();++i){ mmax=max(mmax,toSet(n2[i])); } ll result=getRadix(mmax+1,d1+1,n2,d1); if (result==-1){ cout<<"Impossible"; } else{ cout<<result; } }
我相信大多数人看到题面,按照自己的理解都会认为进制数在35以内,我也一样,看着永远ac不了的代码陷入了沉思,明明感觉是一道水题,就是过不了。
搜了题解,确实是长见识了,这竟然是一道二分搜索题,想了想也确实,就算超过35进制,按题目给的字符串也能表示,只能说是自己格局小了。
那么考虑到进制范围在2~N1+1内,在计算的过程中明显会溢出。难道这题还需要做一个大数相加?看了看题解的处理方法,他是将溢出直接作为不匹配条件进行下一次二分。我就在想,为什么N1不会溢出呢,如果N1也溢出了这种判断方法不就失效了吗?可能是出题人考虑到了这一点,并没有设置N1也溢出的测试点,不然只能乖乖地再去做大数相加。
tip:在二分判断时,不仅要在temp>d1时加一个是否溢出的判断,而且在temp<d1时也要加一个未溢出的判断,否则在溢出时永远满足temp<d1的条件;或者是把temp>d1的判断放到temp<d1前面去,也能起到一样的效果。
标签:25,radix,temp,tag,number,Radix,N1,N2,1010 From: https://www.cnblogs.com/coderhrz/p/16611530.html