首页 > 其他分享 >【luogu P2508】圆上的整点(高斯素数模板)

【luogu P2508】圆上的整点(高斯素数模板)

时间:2022-08-21 02:44:52浏览次数:103  
标签:limits 高斯 P2508 luogu 质数 整数 4k 圆上 prod

圆上的整点

题目链接:luogu P2508

题目大意

给你一个圆,问你圆周上有多少个点的坐标是整点。

思路

考虑一个东西叫做高斯整数。
其实它是复数,是 \(a+bi\) 中 \(a,b\) 都是整数的复数。

那它跟它共轭的乘积其实就是 \(a^2+b^2\),所以我们可以把它转化成 \(a^2+b^2=N\) 这个东西,满足条件的高斯整数个数。


那既然是这样我们就考虑这个 \(N\) 要怎么在高斯整数上分解。
那在整数范围有唯一的分解,就是质因数分解嘛。
不过准确一点其实可以说是不唯一,因为你可以同时给两个质因数取反,得到的还是可以,毕竟负数也是整数。

那在高斯划分中,你也可以划分成一些高斯整数,它在高斯整数上不能再分,那这些就是高斯质数。
在弄 \(-1\) 自然可以,你会发现你甚至可以弄 \(i\)(准确来讲是一个 \(i\) 一个 \(-i\),因为 \(i(-i)=-(-1)=1\))。


那么就是一个问题了,怎么知道一个高斯整数是不是高斯质数。
我们可以用一个叫做费马平方和的定理。

费马平方和定理:奇素数 \(p\) 可以表示乘两个数的平方和当且仅当 \(p\) 是形如 \(4k+1\),其中 \(k\) 为整数。
不考虑两个正整数顺序的时候方法唯一。

(有人不会证,不过想看证明的可以去看百度百科,看着好像不难懂)

那我们就分类讨论一下,对于质数分成 \(2,4k+1,4k+3\)。

  1. \(4k+3\) 是高斯质数,那就对应的圆上没有整点。
  2. \(4k+1\) 是恰好可以被分成一对共轭负数的乘积,那就对应的圆上有整点(至于有多少个我们后面再看)
  3. \(2\) 是可以分成 \((1+i)(1-i)\),而且特殊的是这两个成 \(90°\)(为啥特殊后面会用到)

然后考虑一个数质因数分解之后要怎么弄,我们考虑把三种质数分开来:
\(N=2^p\prod\limits_{a_i=4k+3}a_i^{m_i}\prod\limits_{b_i=4k+1}b_i^{n_i}\)

其中 \(2,b_i\) 是可以分解的,那问题是我们要把 \(N\) 分成一对共轭质数。
我们思考有怎样的分配方式,一种是能分解成共轭的,一边一个,要么是两个一样的,一遍给一个(因为同乘也是可以的,相当于把圆放大罢了,对于的位置还是在整点)

对于每个分类讨论:

  1. \(4k+1\)
    我们可以把它分解两种高斯质数,那如果是 \(n_i\) 个这样的,那我们可以选择给左边 \(0\sim n_i\) 个,所以方案是 \(n_i+1\)。
  2. \(4k+2\)
    这种不能拆,就只能给两边,所以如果 \(m_i\) 是奇数就不行整个答案是 \(0\),否则就不变。
  3. \(2\)
    那看起来也是跟 \(4k+1\) 一样?

然后发现我们漏了一个问题,你上面这个拆只是在正整数的位置,你总的位置还有四个呢!
那答案就要乘上 \(4\),如果在二维平面上形象地表示一下的话,就是每次转 \(90\) 度的感觉。
但是这个时候 \(2\) 就有问题了,你这样搞就会重复,具体来讲只有四个不一样的,所以你可以相当于 \(2\) 不用管,最后答案乘 \(4\) 即可。


然后注意到题目是 \(x^2+y^2=r^2\)。
所以 \(N=r^2\),当然直接单纯的这样是不行的。
考虑看看式子:
\(r=2^p\prod\limits_{a_i=4k+3}a_i^{m_i}\prod\limits_{b_i=4k+1}b_i^{n_i}\)
\(N=2^r=2^{2p}\prod\limits_{a_i=4k+3}a_i^{2m_i}\prod\limits_{b_i=4k+1}b_i^{2n_i}\)
改一改就好了。

代码

#include<cstdio>
#define ll long long

using namespace std;

int n;
ll ans;

void slove(int x, int num) {
	if (x == 2) {
		return ;
	}
	if (x % 4 == 3) {
		if ((2 * num) & 1) ans = 0; return ;
	}
	if (x % 4 == 1) {
		ans *= (2 * num + 1); return ;
	}
}

int main() {
	scanf("%d", &n); ans = 1;
	for (int i = 2; i * i <= n; i++) {
		if (n % i != 0) continue;
		int num = 0; while (n % i == 0) n /= i, num++;
		slove(i, num);
	}
	if (n > 1) slove(n, 1);
	
	printf("%lld", ans * 4);
	
	return 0;
}

标签:limits,高斯,P2508,luogu,质数,整数,4k,圆上,prod
From: https://www.cnblogs.com/Sakura-TJH/p/luogu_P2508.html

相关文章

  • P2508-[HAOI2008]圆上的整点【数学】
    正题题目链接:https://www.luogu.com.cn/problem/P2508题目大意一个在\((0,0)\)的圆心,半径为\(r\),求圆有多少个整点。\(1\leqr\leq2\times10^9\)解题思路设这个......
  • luogu P1488 肥猫的游戏
    肥猫的游戏P1488肥猫的游戏-洛谷|计算机科学教育新生态(luogu.com.cn)题目描述野猫与胖子,合起来简称肥猫,是一个班的同学,他们也都是数学高手,所以经常在一起讨论数......
  • luogu P1721 [NOI2016] 国王饮水记
    题面传送门首先我们发现,一定不会有低于\(h_1\)的参与操作的过程。然后考虑一个\(x\)与比它大的\(y<z\),则发现一定是先\((x,y)\),再\((\frac{x+y}{2},z)\)更好。因为这样......
  • luogu P8293 [省选联考 2022] 序列变换
    题面传送门因为WC2022考了这种构造,所以下意识将括号序列建树。手玩一下发现第一个操作实际上是干了这个事情:也就是说把用其中一个括号将另一个同层括号在树上移到了下......
  • luoguP3521 [POI2011]ROT-Tree Rotations【线段树】
    你要写热,就不能只写热。要写酷暑,写骄阳,写他人耳闻便生恐的炙烤和炎灼。要写白日出门一刻便肤色黝黑,背心透彻。写求雨心切,写出行伞遮。写夜晚不停的风扇和蝉聒。写鸡......
  • luoguP3224 [HNOI2012]永无乡【线段树,并查集】
    洞庭青草,近中秋,更无一点风色。玉鉴琼田三万顷,着我扁舟一叶。素月分辉,明河共影,表里俱澄澈。悠然心会,妙处难与君说。应念岭表经年,孤光自照,肝胆皆冰雪。短发萧骚襟袖冷,稳泛......
  • 【luogu CF1710C】XOR Triangle(数位DP)
    XORTriangle题目链接:luoguCF1710C题目大意给你一个数n,要你求有多少个满足条件的a,b,c使得它们两两异或得到的三个值可以得到一个非退化三角形。其中a,b,c值域在......
  • 【$dp$】$\text{LuoguP6570}$ 优秀子序列
    \(\text{LuoguP6570}\)优秀子序列读完题大概能yy到一个转移,即枚举两个不相交的子集然后转移。其实这题的顺序都无所谓,应该排个序,或者直接在值域上操作。\(DP\),用\(f......
  • 【luogu CF1710B】Rain(差分)(性质)
    Rain题目链接:luoguCF1710B题目大意给你若干个函数,每个函数是一个45度往上线段和往下线段接在一起,两个长度一样,y轴从0出发的。然后对于每个函数,求把它以外的所有......