题目描述:
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤104) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components
where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
算法描述:DFS
题目大意:
给出n个结点,和n-1条边
若是树,则输出能构成最大高度的所有首尾结点;否则输出连通块的数量
#include<iostream>
#include<cstring>
#include<vector>
#include<set>
using namespace std;
const int N = 10010;
set<int> ans;
vector<int> v[N];
vector<int> max_point;
bool st[N];
int max_len = 0;
// 遍历所有结点 求连通块数量
void dfs(int cur)
{
if(st[cur]) return;
st[cur] = 1;
for(int i : v[cur])
dfs(i);
}
// 找最长路径
void _dfs(int cur, int len)
{
if(st[cur]) return;
st[cur] = 1;
if(len > max_len)
{
max_len = len;
max_point.clear();
max_point.push_back(cur);
}
else if(len == max_len) max_point.push_back(cur);
for(int i : v[cur])
{
_dfs(i, len + 1);
}
}
int main()
{
int n;
cin >> n;
for(int i = 1 ; i < n ; i ++)
{
int j, k;
cin >> j >> k;
v[j].push_back(k);
v[k].push_back(j);
}
int cnt = 0;
for(int i = 1 ; i <= n ; i ++)
if(!st[i])
{
cnt ++;
dfs(i);
}
// 连通块cnt为1时是树
if(cnt != 1)
{
printf("Error: %d components", cnt);
}
else
{ //先由根结点出发找到离根结点最远的结点(不一定唯一)并放入set
memset(st, 0, sizeof st);
_dfs(1, 0);
for(int x : max_point) ans.insert(x);
// 再由离根最远的结点(任一)出发找最远的结点(不一定唯一)并放入set
max_point.clear();
max_len = 0;
memset(st, 0, sizeof st);
_dfs(*ans.begin(), 0);
for(int x : max_point) ans.insert(x);
for(int x : ans) cout << x << endl;
}
return 0;
}
标签:25,1021,cur,int,max,len,st,Deepest,root
From: https://www.cnblogs.com/yztozju/p/16608929.html