- 环境准备
确保你的 Elm 环境已设置好。虽然 Elm 本身不直接支持 HTTP 请求和图像处理,但我们可以使用外部 API 来完成这些功能。
首先,安装 Elm:
bash
npm install -g elm
接着创建一个新的 Elm 项目:
bash
elm init
并在 elm.json 中添加依赖:
json
{
"dependencies": {
"elm/http": "2.0.0",
"elm/json": "1.1.0"
}
}
运行 elm install 安装依赖。
- 下载验证码图片
使用 Elm 的 HTTP 库下载验证码图片并保存到本地:
elm
module Main exposing (..)
import Browser
import Http
import Json.Decode as Decode
import Html exposing (..)
import Html.Attributes exposing (src)
import Http exposing (Http.Error)
type Msg
= DownloadCaptcha
| CaptchaDownloaded (Result Http.Error String)
update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
case msg of
DownloadCaptcha ->
(model, Http.get { url = "https://captcha7.scrape.center/captcha.png", expect = Http.expectString CaptchaDownloaded})
CaptchaDownloaded result ->
case result of
Ok body ->
(model, Cmd.none)
Err error ->
(model, Cmd.none)
main =
Browser.sandbox { init = init, update = update, view = view }
3. 图像处理与 OCR 识别
由于 Elm 主要是前端语言,可以调用外部的 OCR API 来识别验证码。这通常需要通过 HTTP 请求与后端服务交互。
elm
recognizeCaptcha : String -> Cmd Msg
recognizeCaptcha imageUrl =
Http.post
{ url = "https://your-ocr-api.com/recognize"
, body = Http.jsonBody (Decode.object [("imageUrl", Decode.string imageUrl)])
, expect = Http.expectJson CaptchaRecognized responseDecoder
}
4. 自动化登录
同样地,使用 HTTP 库发送 POST 请求来模拟登录:
elm
login : String -> String -> String -> Cmd Msg
login username password captcha =
Http.post
{ url = "https://captcha7.scrape.center/login"
, body = Http.jsonBody (Decode.object
[ ("username", Decode.string username)
, ("password", Decode.string password)
, ("captcha", Decode.string captcha)
])
, expect = Http.expectJson LoginResponse responseDecoder
}
5. 主程序
整合上述代码,创建主程序:
elm更多内容联系1436423940
type alias Model =
{}
init : () -> (Model, Cmd Msg)
init _ =
( {}, Cmd.none )
view : Model -> Html Msg
view model =
div []
[ button [ onClick DownloadCaptcha ] [ text "下载验证码" ]
, -- 这里可以添加显示验证码的逻辑
]
main =
Browser.sandbox { init = init, update = update, view = view }