递归代码模板
Python
def recursion(level, param1, param2, ...):
#recursion terminator //递归终结者
if level >MAX_LEVEL:
#process_result //过程的结果
return
#process logic in current level //处理当前级别的逻辑
process(level, data...)
#drill down //向下递归
self.recursion(level +1,p1,...)
#reverse the current level status if needed /如果需要,反转当前的级别状态
Java
public void recur(int level, int param) {
// terminator
if (level > MAX_LEVEL) {
// process result
return;
}
// process current logic
process(level, param);
// drill down
recur(level:level + 1, newParam);
// restore current status
}
分治代码模板
Python
def divide_conquer(problem, param1, param2, ...):
# recursion terminator
if problem is None:
print_result
return
# prepare data
data = prepare_data(problem)
subproblems = split_problem(problem, data)
# conquer subproblems
subresult1 = self.divide_conquer(subproblems[0], p1, ...)
subresult2 = self.divide_conquer(subproblems[1], p1, ...)
subresult3 = self.divide_conquer(subproblems[2], p1, ...)
…
# process and generate the final result
result = process_result(subresult1, subresult2, subresult3, …)
# revert the current level states
java
private static int divide_conquer(Problem problem, ) {
if (problem == NULL) {
int res = process_last_result();
return res;
}
subProblems = split_problem(problem)
res0 = divide_conquer(subProblems[0])
res1 = divide_conquer(subProblems[1])
result = process_result(res0, res1);
return result;
}
动态规划的关键:
- 最优子结构
opt[n]=best_of(opt[n-1],opt[n-2],,,,,,,)
- 储存中间状态
opt[i]
- 递推公式:(美其名字:状态转移方程或者DP方程)
FIb:opt[i]=opt[n-1]+opt[n-2]
二维路径:opt[i,j]=opt[i+1][j]+opt[i][j+1]
(且判断a[i,j]是否为空地)