首页 > 其他分享 >中国海洋大学24秋《软件工程原理与实践》 实验4:MobileNet & ShuffleNet

中国海洋大学24秋《软件工程原理与实践》 实验4:MobileNet & ShuffleNet

时间:2024-10-16 21:52:30浏览次数:13  
标签:24 海洋大学 MobileNet self torch patch shape test size

代码练习

1. 下载 Indian Pines 数据集
! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat
! wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat
  • Indian Pines 是一个标准的高光谱数据集,广泛用于分类任务的研究。

    在这里插入图片描述

2. 导入必要的库和模块
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
import spectral
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

网络架构及训练

3. 定义 HybridSN 网络
  • 3D卷积:用于提取光谱和空间信息。
  • 2D卷积:提取更高级的空间特征。
  • 全连接层:用于分类。
    # 网络定义
class HybridSN(nn.Module):
    def __init__(self, class_num=16):
        super(HybridSN, self).__init__()
        
        # 3D Convolutional Layers (for spectral feature extraction)
        self.conv3d_1 = nn.Conv3d(in_channels=1, out_channels=8, kernel_size=(7, 3, 3), stride=1, padding=0)
        self.conv3d_2 = nn.Conv3d(in_channels=8, out_channels=16, kernel_size=(5, 3, 3), stride=1, padding=0)
        self.conv3d_3 = nn.Conv3d(in_channels=16, out_channels=32, kernel_size=(3, 3, 3), stride=1, padding=0)
        
        # 2D Convolutional Layer (for spatial feature extraction)
        self.conv2d = nn.Conv2d(in_channels=32 * 18, out_channels=64, kernel_size=(3, 3), stride=1, padding=0)
        
        # Fully connected layers
        self.fc1 = nn.Linear(64 * 17 * 17, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, class_num)
        
        # Dropout layer
        self.dropout = nn.Dropout(p=0.4)
        
    def forward(self, x):
        # Input: x is (batch_size, 1, spectral_bands, height, width)
        
        # 3D Convolutions
        x = F.relu(self.conv3d_1(x))  # Output: (batch_size, 8, 24, 23, 23)
        x = F.relu(self.conv3d_2(x))  # Output: (batch_size, 16, 20, 21, 21)
        x = F.relu(self.conv3d_3(x))  # Output: (batch_size, 32, 18, 19, 19)
        
        # Reshape for 2D convolutions: (batch_size, 32*18, 19, 19)
        x = x.view(x.size(0), 32 * 18, 19, 19)
        
        # 2D Convolution
        x = F.relu(self.conv2d(x))  # Output: (batch_size, 64, 17, 17)
        
        # Flatten the feature map for fully connected layers
        x = x.view(x.size(0), -1)  # Output: (batch_size, 64 * 17 * 17 = 18496)
        
        # Fully connected layers with dropout
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        
        # Output layer
        x = self.fc3(x)  # No activation, as this is for logits
        
        return x

运行后,可以使用以下代码测试网络:

x = torch.randn(1, 1, 30, 25, 25)  # 模拟输入
net = HybridSN(class_num=16)
y = net(x)
print(y.shape)  # 输出应为 (1, 16)
  • 图片:展示网络结构输出 y.shape

    height


数据处理及训练集/测试集划分

4. PCA 降维与数据预处理
# 对高光谱数据 X 应用 PCA 变换
def applyPCA(X, numComponents):
    newX = np.reshape(X, (-1, X.shape[2]))
    pca = PCA(n_components=numComponents, whiten=True)
    newX = pca.fit_transform(newX)
    newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
    return newX

# 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
def padWithZeros(X, margin=2):
    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
    x_offset = margin
    y_offset = margin
    newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
    return newX

# 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
    # 给 X 做 padding
    margin = int((windowSize - 1) / 2)
    zeroPaddedX = padWithZeros(X, margin=margin)
    # split patches
    patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
    patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
    patchIndex = 0
    for r in range(margin, zeroPaddedX.shape[0] - margin):
        for c in range(margin, zeroPaddedX.shape[1] - margin):
            patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]   
            patchesData[patchIndex, :, :, :] = patch
            patchesLabels[patchIndex] = y[r-margin, c-margin]
            patchIndex = patchIndex + 1
    if removeZeroLabels:
        patchesData = patchesData[patchesLabels>0,:,:,:]
        patchesLabels = patchesLabels[patchesLabels>0]
        patchesLabels -= 1
    return patchesData, patchesLabels

def splitTrainTestSet(X, y, testRatio, randomState=345):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
    return X_train, X_test, y_train, y_test
  • PCA 降维:减少数据的维度,提高训练效率。

训练和测试

5. 定义训练与测试数据集类
# 地物类别
class_num = 16
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']

# 用于测试样本的比例
test_ratio = 0.90
# 每个像素周围提取 patch 的尺寸
patch_size = 25
# 使用 PCA 降维,得到主成分的数量
pca_components = 30

print('Hyperspectral data shape: ', X.shape)
print('Label shape: ', y.shape)

print('\n... ... PCA tranformation ... ...')
X_pca = applyPCA(X, numComponents=pca_components)
print('Data shape after PCA: ', X_pca.shape)

print('\n... ... create data cubes ... ...')
X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
print('Data cube X shape: ', X_pca.shape)
print('Data cube y shape: ', y.shape)

print('\n... ... create train & test data ... ...')
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
print('Xtrain shape: ', Xtrain.shape)
print('Xtest  shape: ', Xtest.shape)

# 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
Xtest  = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
print('before transpose: Xtrain shape: ', Xtrain.shape) 
print('before transpose: Xtest  shape: ', Xtest.shape) 

# 为了适应 pytorch 结构,数据要做 transpose
Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
Xtest  = Xtest.transpose(0, 4, 3, 1, 2)
print('after transpose: Xtrain shape: ', Xtrain.shape) 
print('after transpose: Xtest  shape: ', Xtest.shape) 


""" Training dataset"""
class TrainDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtrain.shape[0]
        self.x_data = torch.FloatTensor(Xtrain)
        self.y_data = torch.LongTensor(ytrain)        
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

""" Testing dataset"""
class TestDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtest.shape[0]
        self.x_data = torch.FloatTensor(Xtest)
        self.y_data = torch.LongTensor(ytest)
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

# 创建 trainloader 和 testloader
trainset = TrainDS()
testset  = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False, num_workers=2)

!在这里插入图片描述

6. 开始训练
# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 网络放到GPU上
net = HybridSN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

# 开始训练
total_loss = 0
for epoch in range(100):
    for i, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print('[Epoch: %d]   [loss avg: %.4f]   [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))

print('Finished Training')
  • 图片内容:展示部分训练日志。

7. 模型测试
count = 0
# 模型测试
for inputs, _ in test_loader:
    inputs = inputs.to(device)
    outputs = net(inputs)
    outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
    if count == 0:
        y_pred_test =  outputs
        count = 1
    else:
        y_pred_test = np.concatenate( (y_pred_test, outputs) )

# 生成分类报告
classification = classification_report(ytest, y_pred_test, digits=4)
print(classification)
  • 实验效果

在这里插入图片描述


备用函数

8. 生成完整报告
from operator import truediv

def AA_andEachClassAccuracy(confusion_matrix):
    counter = confusion_matrix.shape[0]
    list_diag = np.diag(confusion_matrix)
    list_raw_sum = np.sum(confusion_matrix, axis=1)
    each_acc = np.nan_to_num(truediv(list_diag, list_raw_sum))
    average_acc = np.mean(each_acc)
    return each_acc, average_acc


def reports (test_loader, y_test, name):
    count = 0
    # 模型测试
    for inputs, _ in test_loader:
        inputs = inputs.to(device)
        outputs = net(inputs)
        outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
        if count == 0:
            y_pred =  outputs
            count = 1
        else:
            y_pred = np.concatenate( (y_pred, outputs) )

    if name == 'IP':
        target_names = ['Alfalfa', 'Corn-notill', 'Corn-mintill', 'Corn'
                        ,'Grass-pasture', 'Grass-trees', 'Grass-pasture-mowed', 
                        'Hay-windrowed', 'Oats', 'Soybean-notill', 'Soybean-mintill',
                        'Soybean-clean', 'Wheat', 'Woods', 'Buildings-Grass-Trees-Drives',
                        'Stone-Steel-Towers']
    elif name == 'SA':
        target_names = ['Brocoli_green_weeds_1','Brocoli_green_weeds_2','Fallow','Fallow_rough_plow','Fallow_smooth',
                        'Stubble','Celery','Grapes_untrained','Soil_vinyard_develop','Corn_senesced_green_weeds',
                        'Lettuce_romaine_4wk','Lettuce_romaine_5wk','Lettuce_romaine_6wk','Lettuce_romaine_7wk',
                        'Vinyard_untrained','Vinyard_vertical_trellis']
    elif name == 'PU':
        target_names = ['Asphalt','Meadows','Gravel','Trees', 'Painted metal sheets','Bare Soil','Bitumen',
                        'Self-Blocking Bricks','Shadows']
    
    classification = classification_report(y_test, y_pred, target_names=target_names)
    oa = accuracy_score(y_test, y_pred)
    confusion = confusion_matrix(y_test, y_pred)
    each_acc, aa = AA_andEachClassAccuracy(confusion)
    kappa = cohen_kappa_score(y_test, y_pred)
    
    return classification, confusion, oa*100, each_acc*100, aa*100, kappa*100
classification, confusion, oa, each_acc, aa, kappa = reports(test_loader, ytest, 'IP')
classification = str(classification)
confusion = str(confusion)
file_name = "classification_report.txt"

with open(file_name, 'w') as x_file:
    x_file.write('\n')
    x_file.write('{} Kappa accuracy (%)'.format(kappa))
    x_file.write('\n')
    x_file.write('{} Overall accuracy (%)'.format(oa))
    x_file.write('\n')
    x_file.write('{} Average accuracy (%)'.format(aa))
    x_file.write('\n')
    x_file.write('\n')
    x_file.write('{}'.format(classification))
    x_file.write('\n')
    x_file.write('{}'.format(confusion))
    # load the original image
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']

height = y.shape[0]
width = y.shape[1]

X = applyPCA(X, numComponents= pca_components)
X = padWithZeros(X, patch_size//2)

# 逐像素预测类别
outputs = np.zeros((height,width))
for i in range(height):
    for j in range(width):
        if int(y[i,j]) == 0:
            continue
        else :
            image_patch = X[i:i+patch_size, j:j+patch_size, :]
            image_patch = image_patch.reshape(1,image_patch.shape[0],image_patch.shape[1], image_patch.shape[2], 1)
            X_test_image = torch.FloatTensor(image_patch.transpose(0, 4, 3, 1, 2)).to(device)                                   
            prediction = net(X_test_image)
            prediction = np.argmax(prediction.detach().cpu().numpy(), axis=1)
            outputs[i][j] = prediction+1
    if i % 20 == 0:
        print('... ... row ', i, ' handling ... ...')
  • 图片

可视化预测结果

9. 展示预测结果
predict_image = spectral.imshow(classes=outputs.astype(int), figsize=(5, 5))
  • 图片内容:展示最终预测结果图像。

在这里插入图片描述在这里插入图片描述


问题总结


1. 为什么每次训练结果不同?

原因

  • 每次训练的随机性来自:
    1. 随机初始化:模型权重的初始化是随机的。
    2. 数据的随机打乱:训练集在每个 epoch 会重新打乱。
    3. Dropout:在训练过程中,部分神经元会被随机丢弃。
set_seed(42)

2. 如何提升高光谱图像的分类性能?

改进方向及公式

  1. 数据增强

    • 添加高斯噪声或翻转图像。
  2. 模型优化

    • 添加更多层、使用残差结构(如 ResNet)。
  3. 引入注意力机制(Attention)

    • 使用 SENetTransformer 改进。
  4. 正则化

    • 使用 L2正则化Dropout 避免过拟合。

公式

  • 损失函数 + L2 正则化
    L ( θ ) = L 0 + λ ∑ i ∥ θ i ∥ 2 L(\theta) = L_0 + \lambda \sum_{i} \|\theta_i\|^2 L(θ)=L0​+λi∑​∥θi​∥2

    • 其中, L 0 L_0 L0​ 是原损失函数, λ \lambda λ 是正则化系数。

代码示例

optimizer = optim.Adam(net.parameters(), lr=0.001, weight_decay=1e-5)  # L2正则化

3. Depth-wise 卷积与分组卷积的区别与联系

公式与说明

  • Depth-wise 卷积
    每个通道单独做卷积:
    Y i = X i ∗ K i Y_i = X_i * K_i Yi​=Xi​∗Ki​

    • 其中, X i X_i Xi​ 和 K i K_i Ki​ 分别是输入的第 i i i 个通道和卷积核。
  • 分组卷积
    将通道分为 g g g 个组,每组内共享卷积:
    Y i = ∑ j ∈ G i ( X j ∗ K j ) Y_i = \sum_{j \in G_i} (X_j * K_j) Yi​=j∈Gi​∑​(Xj​∗Kj​)

代码示例

# Depth-wise 卷积示例
depthwise_conv = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, groups=32)

# 分组卷积示例(将通道分为4组)
grouped_conv = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, groups=4)

4. SENet 的注意力机制是否可以用于空间位置?

可以。

公式

  • SENet 的通道注意力公式:
    z = σ ( W 2 δ ( W 1 s ) ) \mathbf{z} = \sigma(W_2 \delta(W_1 \mathbf{s})) z=σ(W2​δ(W1​s))

    • 其中, s \mathbf{s} s 是通道全局平均池化后的结果。
  • 扩展到空间注意力
    使用空间位置的权重来关注重要区域:

    M s p a t i a l = σ ( Conv2D ( X ) ) \mathbf{M}_{spatial} = \sigma(\text{Conv2D}(X)) Mspatial​=σ(Conv2D(X))

代码示例

class SpatialAttention(nn.Module):
    def __init__(self):
        super(SpatialAttention, self).__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3)  # 空间注意力卷积

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化
        max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化
        combined = torch.cat([avg_out, max_out], dim=1)  # 合并
        attention = torch.sigmoid(self.conv(combined))  # 注意力权重
        return x * attention

5. ShuffleNet 中通道的 Shuffle 如何实现?

  • 通道 Shuffle:打乱分组卷积的通道,以增强组内信息交换。

公式

将通道重新排列:
X = X . r e s h a p e ( N , G , C / / G , H , W ) . p e r m u t e ( 0 , 2 , 1 , 3 , 4 ) . r e s h a p e ( N , C , H , W ) X = X.reshape(N, G, C//G, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W) X=X.reshape(N,G,C//G,H,W).permute(0,2,1,3,4).reshape(N,C,H,W)

  • 其中, G G G 是组数, C C C 是通道数。

代码示例

import torch

def channel_shuffle(x, groups):
    batch_size, channels, height, width = x.size()
    assert channels % groups == 0

    # 将通道 reshape 成 (batch_size, groups, channels_per_group, height, width)
    x = x.view(batch_size, groups, channels // groups, height, width)

    # 交换 groups 和 channels_per_group 的维度
    x = x.permute(0, 2, 1, 3, 4).contiguous()

    # 恢复为原始形状
    x = x.view(batch_size, channels, height, width)
    return x

# 示例
input_tensor = torch.randn(1, 32, 28, 28)  # 假设输入形状
output_tensor = channel_shuffle(input_tensor, groups=4)
print(output_tensor.shape)  # 输出应为 (1, 32, 28, 28)

总结

MobileNet(V1、V2、V3)和 ShuffleNet 通过 深度可分离卷积倒残差结构分组卷积通道 Shuffle 等技术,实现了高效轻量化网络,适用于资源受限的环境。SENetCBAM 则利用 通道空间注意力机制 提升模型对关键信息的感知能力。在高光谱图像分类任务中,结合 HybridSN 的 3D 和 2D 卷积 提取多层次特征,并采用 正则化注意力模块 等优化方法,将进一步提高分类精度。这些技术的发展展示了轻量化与智能化网络的未来趋势,为移动设备和嵌入式系统中的深度学习应用提供了广泛的可能性。

标签:24,海洋大学,MobileNet,self,torch,patch,shape,test,size
From: https://blog.csdn.net/aaaaaaaask/article/details/142992514