目录
第四门课 卷积神经网络(Convolutional Neural Networks)
第三周 目标检测(Object detection)
3.5 Bounding Box 预测(Bounding box predictions)
在上一个视频中,你们学到了滑动窗口法的卷积实现,这个算法效率更高,但仍然存在问题,不能输出最精准的边界框。在这个视频中,我们看看如何得到更精准的边界框。
在滑动窗口法中,你取这些离散的位置集合,然后在它们上运行分类器,在这种情况下,这些边界框没有一个能完美匹配汽车位置,也许这个框(编号 1)是最匹配的了。还有看起来这个真实值,最完美的边界框甚至不是方形,稍微有点长方形(红色方框所示),长宽比有点向水平方向延伸,有没有办法让这个算法输出更精准的边界框呢?
其中一个能得到更精准边界框的算法是 YOLO 算法,YOLO(You only look once)意思是你只看一次,这是由 Joseph Redmon,Santosh Divvala,Ross Girshick 和 Ali Farhadi 提出的算法。
是这么做的,比如你的输入图像是 100×100 的,然后在图像上放一个网格。为了介绍起来简单一些,我用 3×3 网格,实际实现时会用更精细的网格,可能是 19×19。基本思路是使用图像分类和定位算法,前几个视频介绍过的,然后将算法应用到 9 个格子上。(基本思路是,采用图像分类和定位算法,本周第一个视频中介绍过的,逐一应用在图像的 9 个格子中。)更具体一点,你需要这样定义训练标签,所以对于 9 个格子中的每一个指定一个标签
标签:Convolutional,吴恩达,这个,边界,格子,对象,3.6,19,算法 From: https://blog.csdn.net/weixin_43597208/article/details/142954828