子集和问题(subset)
由于是子序列,所以选的顺序没有要求,那么我们可以从大到小排序,然后设 \(dp_{i, j}\) 表示选前 \(i\) 个中的数字,和为 \(j\),然后每次统计时直接乘上组合数即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 3e3 + 5, mod = 998244353;
int n, m, a[N], dp[N], cur[N], ans[N];
int fact[N], inv[N], factinv[N];
int C(int n, int m) {
return fact[n] * factinv[m] % mod * factinv[n - m] % mod;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
freopen("subset.in", "r", stdin);
freopen("subset.out", "w", stdout);
fact[0] = 1, inv[1] = 1, factinv[0] = 1;
for (int i = 1; i <= 3000; i++) {
fact[i] = fact[i - 1] * i % mod;
if (i > 1) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
factinv[i] = factinv[i - 1] * inv[i] % mod;
}
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
sort(a + 1, a + n + 1);
dp[0] = 1;
for (int i = n; i >= 1; i--) {
for (int j = 0; j <= m; j++) {
cur[min(j + a[i], m)] += dp[j];
cur[min(j + a[i], m)] %= mod;
}
for (int j = 0; j < i; j++) {
ans[j] += C(i - 1, j) * cur[m] % mod;
ans[j] %= mod;
}
for (int j = 0; j <= m; j++) {
dp[j] += cur[j];
dp[j] %= mod;
cur[j] = 0;
}
}
for (int i = 0; i <= n; i++) {
cout << ans[i] << "\n";
}
return 0;
}
完美挑战(perfect)
我们考虑直接将无限的式子列出来,接下来是只考虑一个数的情况
\[t \times \frac {a}{b} + t \times (1 - \frac {a}{b}) + t \times \frac {a}{b} \times (1 - \frac {a}{b}) + t \times (1 - \frac {a}{b}) ^ 2 + t \times \frac {a}{b} \times (1 - \frac {a}{b}) ^ 2 ... \]那么我们可以化简成
\[t \times \frac {a}{b} \times (1 + (1 - \frac {a}{b}) + (1 - \frac {a}{b}) ^ 2...) + t \times (1 - \frac {a}{b}) \times (1 + (1 - \frac {a}{b}) + (1 - \frac {a}{b}) ^ 2...) \]然后用等比数列化简,然后再用类似于一战到底的方法排序即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 2e5 + 5, mod = 998244353;
struct node {
int t, a, b;
}x[N];
int n, ans;
long double val(node i, node j) {
long double ans = i.t + i.t * (i.b - i.a) * 1.0 / i.a * 1.0;
ans = (ans + j.t) + (ans + j.t) * (j.b - j.a) * 1.0 / j.a * 1.0;
return ans;
}
bool cmp(node _x, node _y) {
return val(_x, _y) < val(_y, _x);
}
int mypow(int a, int b) {
int tot = 1;
while (b) {
if (b & 1) {
tot = tot * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return tot;
}
signed main() {
freopen("perfect.in", "r", stdin);
freopen("perfect.out", "w", stdout);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> x[i].t >> x[i].a >> x[i].b;
}
//cout << val(x[2], x[1]) << "\n";
sort(x + 1, x + n + 1, cmp);
for (int i = 1; i <= n; i++) {
int tmp = (ans + x[i].t) % mod + (ans + x[i].t) * (x[i].b - x[i].a) % mod * mypow(x[i].a, mod - 2) % mod;
ans = tmp % mod;
}
cout << ans;
return 0;
}
标签:20241014,frac,int,long,times,ans,mod
From: https://www.cnblogs.com/libohan/p/18468409