实验6:开源控制器实践——RYU
一、实验目的
- 能够独立部署RYU控制器;
- 能够理解RYU控制器实现软件定义的集线器原理;
- 能够理解RYU控制器实现软件定义的交换机原理。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
- 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。
- 使用命令在lab6中搭建拓扑图
- 启动控制器
- 通过Ryu的图形界面查看网络拓扑
-
2.阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。
-
- 在lab6中创建L2Switch.py
-
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0 class L2Switch(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION] def __init__(self, *args, **kwargs): super(L2Switch, self).__init__(*args, **kwargs) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg dp = msg.datapath ofp = dp.ofproto ofp_parser = dp.ofproto_parser actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)] data = None if msg.buffer_id == ofp.OFP_NO_BUFFER: data = msg.data out = ofp_parser.OFPPacketOut( datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port, actions=actions, data = data) dp.send_msg(out)
运行ryu:
-
重新搭建拓扑图:
-
对p1和p2进行抓包,在目标主机中验证验证L2Switch
- h1 ping h2
-
h2 ping h3
- L2Switch和POX的Hub模块的不同
- 相同之处:两个模块使用的是洪泛转发ICMP报文,所以无论h1 ping h2还是h3,都能收到数据包。
不同之处:L2Switch下发的流表无法在mininet上查看,而Hub可以查看
- 3.编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)
-
L2212106627.py
-
from ryu.base import app_manager from ryu.ofproto import ofproto_v1_3 from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER,CONFIG_DISPATCHER from ryu.controller.handler import set_ev_cls class Hub(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self,*args,**kwargs): super(Hub,self).__init__(*args,**kwargs) @set_ev_cls(ofp_event.EventOFPSwitchFeatures,CONFIG_DISPATCHER) def switch_features_handler(self,ev): datapath = ev.msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser match = ofp_parser.OFPMatch() actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath,0,match,actions,"default flow entry") def add_flow(self,datapath,priority,match,actions,remind_content): ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = ofp_parser.OFPFlowMod(datapath=datapath,priority=priority, match=match,instructions=inst); print("install to datapath,"+remind_content) datapath.send_msg(mod); @set_ev_cls(ofp_event.EventOFPPacketIn,MAIN_DISPATCHER) def packet_in_handler(self,ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser in_port = msg.match['in_port'] print("get packet in, install flow entry,and lookback parket to datapath") match = ofp_parser.OFPMatch(); actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)] self.add_flow(datapath,1,match,actions,"hub flow entry") out = ofp_parser.OFPPacketOut(datapath=datapath,buffer_id=msg.buffer_id, in_port=in_port,actions=actions) datapath.send_msg(out);
实验小结:
- 本次实验通过部署Ryu控制器,相比前面的实验还是遇到了不少的问题,在通过Ryu的图形界面查看网络拓扑的时候曾出现了空白的问题,后来在尝试在先打开Ryu控制器之后再搭建拓扑最终得到解决,在百度和询问同学之下,最终完成了实验的基础部分,相对完成进阶部分还是有些吃力,心有余而力不足,继续努力。
-