项目列表
开源项目 |
语言/环境 |
准确率 |
备注 |
Python, Dlib |
|||
Python |
|||
TensorFlow |
99.2% |
||
|
Caffe, Torch |
99.13% |
|
C++ |
中科院山世光 |
||
C/C++ |
其他
https://skybiometry.com/pricing/
https://www.betafaceapi.com/wpa/index.php/pricing
https://facedetection.com/software/
人脸识别大赛
http://www.msceleb.org/leaderboard/iccvworkshop-c1
ageitgey/face_recognition 项目调研
项目地址
https://github.com/ageitgey/face_recognition
性能
99.38% on the Labeled Faces in the Wild benchmark
环境
macOS/Linux
Python 3.3+/Python 2.7
dlib(a C++ ML toolkit, https://github.com/davisking/dlib)
Python Module API Docs
https://face-recognition.readthedocs.io
安装
git clone
https://github.com/davisking/dlib.git
sudo apt-get install cmake
sudo apt-get install libboost-python-dev
sudo python setup.py install
pip2 install face_recognition
使用 (Recognize faces)
import face_recognition
picture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]
# my_face_encoding now contains a universal 'encoding' of my facial features that can be compared to any other picture of a face!
unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]
results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)
总结:
1. 后续需要解决如何部署在服务器上,Docker?
2. 1:1 识别性能很好
3. 1:N 识别需要事先注册并存储face_encodings,然后遍历比对,性能有待测试
标签:人脸识别,encoding,unknown,face,https,com,recognition,调研 From: https://www.cnblogs.com/xiaofeng-fu/p/18460776