首页 > 其他分享 >ME 588, Dynamics and Vibration

ME 588, Dynamics and Vibration

时间:2024-10-07 19:49:12浏览次数:9  
标签:ME equation two 588 motion position Dynamics block equilibrium

ME 588, Dynamics and Vibration

Homework 1

Distributed: 9/25/2024, Due: 10/11/2024

1. Consider a spring-mass system mounted on a spinning disk as shown in Fig. 1. The disk spins at constant angular velocity ω. Moreover, the disk has a diametrical slot, along which a block with mass m slides without friction. The spring connecting the mass and the disk center is a stiffening spring with a negligible free length. Therefore, the spring force Fs is given by Fs = kr(1 + αr2), where k and α are positive constants and r is the radial position of the block. The motion occurs in a horizontal plane, where gravity has no effects. Also, the disk is large enough so that the block will not fall out of the slot. Answer the following questions.

(a) Use the Newtonian approach (i.e., drawing free-body diagrams and applying Newton’s second law) to derive the equations of motion governing the radial position r.

(b) Determine all equilibrium positions.

(c) Derive the linearized equation of motion around each equilibrium position. Describe the condition so that the linearized equation of motion will give a stable and bounded response.

 

Figure 1: A spring-mass system in a spinning disk, version 1

 

Figure 2: Two point masses connected by a massless link

2. A rigid, massless rod of length r connects two particles of mass m1 and m2. Moreover, the two particles are sliding without friction on a circular arc of radius r in the gravity field; see Fig. 2. Let θ be the counterclockwise angular position from the vertical downward direction to the radial direction of particle m2. Moreover, let g be the gravitational acceleration. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two particles m1 and m2.

(b) Apply Newton’s second law to derive the equations of motion of the two particles m1 and m2. Eliminate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t).

(c) Determine equilibrium positions θ0 of the system in terms of m1 and m2.

(d) Consider a special case m1 = m2 = m and focus on the equilibrium position with 0 < θ0 < 90◦. Derive linearized equations of motion around the equilibrium position.

3. Quiz Problem. Consider a two-block system moving in the gravity field shown in Fig. 3. The two blocks have the same mass m and are connected via a rigid, massless rod of length l. As a result of the gravitational acceleration g, block 1 moves horizontally and block 2 can only move vertically. There is no friction in this system. Moreover, block 1 is connected to a wall via a 代 写ME 588, Dynamics and Vibration  linear spring that has a spring constant k and a negligible free length. Therefore, the elongation of the spring is the position x of block 1 from the wall. For block 2, its horizontal distance to the wall is l and its vertical position is y as shown in Fig. 3. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two blocks.

(b) Apply Newton’s second law to derive the equations of motion of the two blocks. Elimi-nate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t), where θ is the angle between the rigid rod and the vertical as shown in Fig. 3.

(c) Determine an algebraic equation governing equilibrium positions θ0 of the system. The equation should involve parameters such as mg and kl. Show that there is only one possible equilibrium for 0 < θ0 < 2/π.

(d) Derive a linearized equation of motion around the equilibrium position. If the two-block system is subjected to disturbance, will the system oscillate around the equilibrium position? Why?

 

Figure 3: A two-block system with a linear spring and a rigid rod

 

Figure 4: Linearization of the central force motion of a particle

4. The small particle of mass m and its restraining cord are spinning with an angular velocity ω on the horizontal surface of a smooth disk as shown in Fig. 4. The input force Fs(t) applied to the cord depends on time t. As a result, the angular velocity ω and the radial position r of the particle are not constant.

(a) Draw a free-body diagram of the particle and shows that the angular momentum is conserved. Therefore,

 

where θ is the angular position of the particle, the dot is the time derivative, and h0 is the initial angular momentum of the particle.

(b) Apply Newton’s second law in polar coordinates to derive the equation of motion. Sim plify the equation in the radial direction through use of (1) to obtain

 

(c) When Fs(t) = , a constant force, the particle will undergo a circular motion. Therefore, r(t)= and ω(t)= are both constant. Determine  and .

(d) When Fs(t) undergoes a small change from , e.g.,

 

the radial position of the particle will deviate from the circular orbit accordingly, i.e.,

 

Substitute (3) and (4) into (2) to linearize the equation. Show that the linearized equation takes the form. of

 

 

Also, specify the initial conditions η(0) and ˙η(0). Hint: First, you need to show that the binomial expansion of r−3 is

 

 

(e) If the force increment ∆F is constant, determine r(t) from (4) and (5). Does the response r(t) oscillate or decay? Plot r(t) with respect to time t.

 

标签:ME,equation,two,588,motion,position,Dynamics,block,equilibrium
From: https://www.cnblogs.com/comp9021/p/18450523

相关文章

  • 解决undefined reference to `google::protobuf::MessageLite::SerializeToString(std
    按照如下步骤安装了proto:https://zhuanlan.zhihu.com/p/631291781但是在后续的protoBuf测试demo中出现了问题 root@e23598ae2d28:/home/lee/Code/protof_test#g++test.cccontacts.pb.cc-otest_proto-lprotobuf-std=c++11-lpthread/tmp/ccbTc1bj.o:Infunction`......
  • 图像分割(Image segementation)
    图像分割(ImageSegmentation)是指在计算机视觉和图像处理领域中,将一幅图像分割成多个具有不同语义或特征的区域,这些区域通常是连续的像素集合,并且每个区域内包含的像素在某些属性上是相似的。这一过程旨在识别图像中的各个对象或者背景,为后续的图像分析、物体识别与跟踪、三维重建......
  • 图像增强(Image enhancement)
    图像增强(ImageEnhancement)是一种图像处理技术,其主要目的是通过特定算法和方法改善图像的视觉效果或提升图像中目标特征的识别能力。它主要包括以下几个方面:提高图像质量:针对原始图像可能存在的噪声、模糊、低对比度等问题进行处理,以提升整体图像的质量。突出重要信息:通过强调......
  • What is the difference between a Homemaker and a Housewife?
    Theterms"homemaker"and"housewife"areoftenusedinterchangeably,buttheycancarrydifferentconnotationsandimplications:HomemakerDefinition:Ahomemakerisgenerallysomeonewhomanagesahouseholdandtakescareofhome-re......
  • FredNormer: 非平稳时间序列预测的频域正则化方法
    时间序列预测是一个具有挑战性的任务,尤其是在处理非平稳数据时。现有的基于正则化的方法虽然在解决分布偏移问题上取得了一定成功但仍存在局限性。这些方法主要在时间域进行操作,可能无法充分捕捉在频域中更明显的动态模式,从而导致次优的结果。FredNormer论文的研究目的主要包......
  • P3527 MET-Meteors 题解
    Solution单次二分:二分时间,做这个时间前的所有操作,然后线性统计。注意到可以整体二分,直接整体二分是\(O(n\log^2n)\)。考虑扫描序列,用线段树维护每个时间段内该位置的增加值,差分一下可以实现。将这棵线段树持久化一下,一个国家所有位置同时二分即可\(O(n\logn)\),可惜空间太......
  • prometheus学习笔记之PromQL
    prometheus学习笔记之PromQL一、PromQL语句简介官方文档:https://prometheus.io/docs/prometheus/latest/querying/basics/Prometheus提供⼀个函数式的表达式语⾔PromQL(PrometheusQueryLanguage),可以使⽤户实时地查找和聚合时间序列数据,表达式计算结果可以在图表中展示,也可......
  • MemoryAnalyzer指定JDK版本
    小手追梦于2021-06-2809:56:24发布阅读量2w收藏20点赞数21分类专栏:java版权java专栏收录该内容171篇文章4订阅订阅专栏问题描述MemoryAnalyzer启动时报错看了日志,提示需要jdk11才可以运行,但是我的环境变量配置的是jdk8,这咋整?不想更改环境变量中的jdk配置信息,因为......
  • Rockchip RK3588 - Rockchip Linux Recovery recovery源码分析
    ----------------------------------------------------------------------------------------------------------------------------开发板:ArmSoM-Sige7开发板eMMC:64GBLPDDR4:8GB显示屏:15.6英寸HDMI接口显示屏u-boot:2017.09linux:5.10-------------------------------......
  • AND-MEX Walk
    算法性质首先容易观察到\[\text{mex}(w_1,w_1\Andw_2,w_1\Andw_2\Andw_3,\cdots,w_1\Andw_2\Andw_3\And\cdotsw_k)\]中集合\[{w_1,w_1\Andw_2,w_1\Andw_2\Andw_3,\cdots,w_1\Andw_2\Andw_3\And\cdotsw_k}\]显然是单调不增的显然答案......