首页 > 其他分享 >风速预测(五)基于Pytorch的EMD-CNN-LSTM模型

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型

时间:2024-10-01 12:51:58浏览次数:3  
标签:EMD plt 模型 Pytorch CNN import LSTM size

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

前言

LSTF(Long Sequence Time-Series Forecasting)问题是在时间序列预测中需要处理长序列的情况。在实际应用中,序列可能会包含大量的数据点,在这种情况下,传统的时间序列预测模型可能会遇到一些挑战,因为处理长序列时会出现一些问题,例如:

  • 长期依赖性: 随着时间序列数据的增长,模型需要能够捕捉长期的依赖关系和趋势。

  • 计算复杂性: 针对长序列进行训练和预测通常需要更多的计算资源和时间。

  • 内存消耗: 长序列通常需要大量的内存来存储数据和模型参数,这可能会导致内存耗尽或者性能下降的问题。

在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到96,运用EMD-CNN-LSTM模型来充分提取序列中的特征信息。

本文基于前期介绍的风速数据(文末附数据集),先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-CNN-LSTM模型对风速数据的预测。风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_比较准的风速预测网站-CSDN博客

1 风速数据EMD分解与可视化

1.1 导入数据

​​​


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取已处理的 CSV 文件
df = pd.read_csv('wind_speed.csv' )
# 取风速数据
winddata = df['Wind Speed (km/h)'].tolist()
winddata = np.array(winddata) # 转换为numpy
# 可视化
plt.figure(figsize=(15,5), dpi=100)
plt.grid(True)
plt.plot(winddata, color='green')
plt.show()

1.2 EMD分解

​​​​​​


from PyEMD import EMD

# 创建 EMD 对象
emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(winddata)

# 可视化
plt.figure(figsize=(20,15))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(winddata, 'r')
plt.title("原始信号")

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(imf)
    plt.title("IMF "+str(num+1), fontsize=10)
# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.8, wspace=0.2)
plt.show()

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为96,制作数据集

3 基于Pytorch的EMD-CNN-LSTM模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch


# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_set = load('train_set')
    train_label = load('train_label')
    # 测试集
    test_set = load('test_set')
    test_label = load('test_label')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),
                                   batch_size=batch_size, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),
                                  batch_size=batch_size, num_workers=workers, drop_last=True)
    return train_loader, test_loader

batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-CNN-LSTM预测模型

注意:输入风速数据形状为 [64, 10, 96], batch_size=64,  维度10维代表10个分量,96代表序列长度(滑动窗口取值)。

3.3 定义模型参数


# 定义模型参数
batch_size = 64
input_len = 96   # 输入序列长度为96 (窗口值)
input_dim = 10    # 输入维度为10个分量
conv_archs = ((1, 32), (1, 64))   # CNN 层卷积池化结构  类似VGG
hidden_layer_sizes = [64, 128]  # LSTM 层 结构
output_size = 1 # 单步输出

model = EMDCNNLSTMModel(batch_size, input_len, input_dim, conv_archs, hidden_layer_sizes, output_size=1)  

# 定义损失函数和优化函数 
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

采用两个评价指标:MSE 与 MAE 对模型训练进行评价,100个epoch,MSE 为0.00412,MAE  为 0.000241,EMD-CNN-LSTM预测效果良好,性能提升明显,适当调整模型参数,还可以进一步提高模型预测表现。通过CNN模型来处理输入的长窗口时间序列数据,能够有效地捕获局部模式和特征,将CNN模型的输出作为LSTM模型的输入,LSTM模型能够更好地捕捉时间序列数据中的长期依赖关系。EMD-CNN-LSTM模型效果明显,可见其性能的优越性。

注意调整参数:

  • 可以适当调整CNN中卷积池化的层数和维度,微调学习率;

  • 调整LSTM层数和维度,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3.5 结果可视化

代码、数据整理如下:

​​​​​​​

标签:EMD,plt,模型,Pytorch,CNN,import,LSTM,size
From: https://blog.csdn.net/2402_85668383/article/details/142669697

相关文章

  • Pytorch-CNN轴承故障一维信号分类(二)
    往期精彩内容:Python-凯斯西储大学(CWRU)轴承数据解读与分类处理Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客三十多个开源数据集|故障诊断再也不用担心数据集了!Python轴承故障诊断(一)短时傅里叶变换STFT-CSDN博客Python轴承故障诊断(二)连续小波变换CWT-CSDN博客......
  • CNN模型实现CIFAR-10彩色图片识别
    关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目......
  • 【代码实现】opencv 高斯模糊和pytorch 高斯模糊
    wiki百科GaussianBlur,也叫高斯平滑,是在AdobePhotoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。opencv实现opencv实现高斯滤波有两种方式,1、是使用自带的cv2.GaussianBlur,2、自己构造高斯kernel,然后调用cv......
  • pytorch线性/非线性回归拟合
    一、线性回归1.导入依赖库importnumpyasnpimportmatplotlib.pyplotaspltimporttorchfromtorchimportnn,optimfromtorch.autogradimportVariablenumpy:用来构建数据matplotlib.pyplot: 将构建好的数据可视化torch.nn:包含了torch已经准备好的层,激活函数、全......
  • 基于卷积神经网络的宠物皮肤病识别系统,resnet50,mobilenet模型【pytorch框架+python】
       更多目标检测和图像分类识别项目可看我主页其他文章功能演示:基于卷积神经网络的宠物皮肤病识别系统,resnet50,mobilenet【pytorch框架,python,tkinter】_哔哩哔哩_bilibili(一)简介基于卷积神经网络的宠物皮肤病识别系统是在pytorch框架下实现的,这是一个完整的项目,包括代码......
  • Java Deeplearning4j:构建和训练卷积神经网络(CNN)模型
    ......
  • 【PyTorch】环境配置
    Window11+RTX4060配置CUDA11.8+pytorch2.0.0下载CUDA11.8进入官网下载Link,然后点击ArchiveofPreviousCUDAReleases,找到对应版本11.8。选择对应操作系统版本,点Download下载到本地。下载cuDNN点击链接Link,找到CUDA11.8对应的cuDNN。安装CUDA11.8全程点击next直......
  • VMD-BKA-CNN-BiLSTM四模型多变量时间序列光伏功率预测一键对比 Matlab代码
    基于VMD-BKA-CNN-BiLSTM、VMD-CNN-BiLSTM、VMD-BiLSTM、BiLSTM四模型多变量时间序列光伏功率预测一键对比(仅运行一个main即可)[原创未发表]Matlab代码赠送BKA原文献每个模型的预测结果和组合对比结果都有!运行步骤:1.先运行main1进行VMD分解2.在运行main2进行四模型一......
  • Pytorch学习笔记--搭建神经网络以及Sequential的使用
    首先,搭建一个如下图所示的神经网络: 分析图片,inputs输入图片的inchannels=3,尺寸是32*32,经过kernel_size=5的卷积操作后out_channels=32,尺寸32*32,套用下方公式可算出padding=2(默认dilation=1,stride=1):self.conv1=Conv2d(3,32,5,padding=2)  之后再进行池化操作Max-poolin......
  • 从Anaconda到PyTorch到训练Yolo——Windows系统
    1、Anacondaconda能管理不同的开发编译环境,互补干涉影响。Anaconda和Miniconda是conda的工具,前者带界面(大而全),后者只有命令行窗口(小而精)。作为初学,建议安装Anaconda1.1安装Anaconda下载 DownloadAnacondaDistribution|Anaconda ,安装到D盘,其他默认。 1.2更换源 ......