首页 > 其他分享 >吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6

时间:2024-09-29 14:55:09浏览次数:10  
标签:Convolutional 输出 吴恩达 Neural 卷积 32 28 192 过滤器

目录

  • 第四门课 卷积神经网络(Convolutional Neural Networks)
    • 第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)
      • 2.5 网络中的网络以及 1×1 卷积(Network in Network and 1×1 convolutions)
      • 2.6 谷歌 Inception 网络简介(Inception network motivation)

第四门课 卷积神经网络(Convolutional Neural Networks)

第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)

2.5 网络中的网络以及 1×1 卷积(Network in Network and 1×1 convolutions)

在架构内容设计方面,其中一个比较有帮助的想法是使用 1×1 卷积。也许你会好奇,1×1 的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看。

过滤器为 1×1,这里是数字 2,输入一张 6×6×1 的图片,然后对它做卷积,起过滤器大小为 1×1×1,结果相当于把这个图片乘以数字 2,所以前三个单元格分别是 2、4、6 等等。用 1×1 的过滤器进行卷积,似乎用处不大,只是对输入矩阵乘以某个数字。但这仅仅是对于6×6×1 的一个通道图片来说,1×1 卷积效果不佳。

在这里插入图片描述
如果是一张 6×6×32 的图片,那么使用 1×1 过滤器进行卷积效果更好。具体来说,1×1 卷积所实现的功能是遍历这 36 个单元格,计算左图中 32 个数字和过滤器中 32 个数字的元素积之和,然后应用 ReLU 非线性函数。

在这里插入图片描述
我们以其中一个单元为例,它是这个输入层上的某个切片,用这 36 个数字乘以这个输入层上 1×1 切片,得到一个实数,像这样把它画在输出中。

这个 1×1×32 过滤器中的 32 个数字可以这样理解,一个神经元的输入是 32 个数字(输入图片中左下角位置 32 个通道中的数字),即相同高度和宽度上某一切片上的 32 个数字,这 32 个数字具有不同通道,乘以 32 个权重(将过滤器中的 32 个数理解为权重),然后应
用 ReLU 非线性函数,在这里输出相应的结果。

在这里插入图片描述
一般来说,如果过滤器不止一个,而是多个,就好像有多个输入单元,其输入内容为一个切片上所有数字,输出结果是 6×6 过滤器数量。

在这里插入图片描述
所以 1×1 卷积可以从根本上理解为对这 32 个不同的位置都应用一个全连接层,全连接层的作用是输入 32 个数字(过滤器数量标记为

标签:Convolutional,输出,吴恩达,Neural,卷积,32,28,192,过滤器
From: https://blog.csdn.net/weixin_43597208/article/details/142628989

相关文章

  • 吴恩达-深度学习-课后作业-答案与总结
    deeplearning-assignment吴恩达-深度学习-课后作业-答案与总结作业只上传了ipynb文件,ipynb文件会持续更新,其它附件如预训练模型等由于太多太大,存放于网盘中执行ipynb文件所需附件下载地址,链接:百度网盘-链接不存在 密码:66gd吴恩达深度学习视频地址:进入 http://study.163......
  • 吴恩达机器学习课程 笔记4 分类 逻辑回归
    逻辑回归机器学习中的逻辑回归(LogisticRegression)是一种广泛使用的分类算法,尽管它的名字中包含“回归”这个词,但实际上它主要用于解决分类问题,特别是二分类问题。逻辑回归模型可以用来预测某一类事件发生的概率,例如预测用户是否会点击广告、病人是否患有某种疾病等。逻辑回归的......
  • 日新月异 PyTorch - pytorch 基础: 通过卷积神经网络(Convolutional Neural Networks,
    源码https://github.com/webabcd/PytorchDemo作者webabcd日新月异PyTorch-pytorch基础:通过卷积神经网络(ConvolutionalNeuralNetworks,CNN)做图片分类-通过ResNet50做图片分类的学习(对cifar10数据集做训练和测试),保存训练后的模型,加载训练后的模型并评估指定的......
  • 吴恩达机器学习课程 笔记3 多元线性回归梯度下降
    多维特征多维特征指的是在机器学习和数据分析中,每个样本不仅由单一特征描述,而是由多个不同属性或维度组成的向量。这些特征可以是连续的也可以是离散的,它们共同构成了数据集的一个样本点。多维特征的例子房屋价格预测:面积(平方米)房间数量建造年份地理位置(经度、纬度)......
  • 论文阅读:Unsupervised Representation Learning with Deep Convolutional Generative
    Abstract背景:希望能缩小CNN在监督学习和无监督学习之间成功应用的差距。贡献:引入了一类称为深度卷积生成对抗网络(DCGAN)的CNN。结果:DCGAN在生成器和判别器中都能从对象到场景学习表示层次结构。1.Introduction贡献:提出DCGAN用于图像分类任务,展示其性能对滤波器......
  • 吴恩达机器学习课程 笔记1 概念
    主要的人工智能分支人工智能(AI)是一个广泛的领域,包含了多个子领域或分支,每个分支都专注于解决特定类型的问题或执行特定的任务。以下是一些主要的人工智能分支:机器学习(MachineLearning):这是AI的一个核心部分,专注于构建可以从数据中学习并作出决策或预测的系统。深度学习(D......
  • 吴恩达新作《如何构建自己的AI职业》看哭我
    在人工智能时代,我们该如何构建属于我们的职业规划呢?吴恩达老师的这本书可能会给我们答案!《HowtoBuildYourCareerinAI》是吴恩达老师创作的一本关于如何在AI领域建立职业生涯的书籍,主要关注学习AI技术技能、选择项目和有序安排项目等方面的职业发展建议。这本书更像......
  • “谷歌大脑之父”吴恩达公布《AI转型指南》:引领企业步入人工智能时代
    前言吴恩达曾说过,人工智能(AI)必将像电力一样改变各行各业,企业越早开启转型,就越享受红利。但问题是,不是每家公司都能请到合适的高管人才,也不是谁都有帮助企业实现AI转型的经验。吴恩达在Medium专栏上po出一封公开信,正式公开免费地发布AITransformationPlaybook,中文译作《人工智能......
  • What is Convolutional Neural Network(CNN)?
    笔记核心部分摘抄以及自己的理解[附有样例,可以轻松理解]:卷积网络的卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。池化层通过减......
  • 神经网络之卷积篇:详解卷积神经网络示例(Convolutional neural network example)
    详解卷积神经网络示例假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片,想做手写体数字识别。32×32×3的RGB图片中含有某个数字,比如7,想识别它是从0-9这10个数字中的哪一个,构建一个神经网络来实现这个功能。用的这个网络模型和经典网络LeNet-5非常相似,灵感也来源于此......