人员闯入报警系统是一种应用于工厂危险作业区域、工地危险作业区域或者重要区域保护等场景的创新解决方案,人员闯入报警系统旨在通过实时监测和识别,对未经许可或非法进入的人员进行及时报警。人员闯入报警系统利用先进的感应与识别技术,确保对危险区域的安全管理和保护。
YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。
工厂危险作业区域、工地危险作业区域或重要区域具有特殊的安全要求,任何未经授权的人员进入可能导致事故风险的增加。因此,人员闯入报警系统具有以下优势:人员闯入报警系统能够实时监测特定区域的人员活动情况,及时发现并报警未经允许的人员闯入。人员闯入报警系统采用先视觉AI智能分析技术和人体特征识别算法,能够准确识别和区分正常人员和未授权人员。人员闯入报警系统发现未经许可的人员闯入,人员闯入报警系统将立即触发警报以提醒相关人员,并采取适当措施。
# 检测类
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
人员闯入报警系统广泛应用于工厂、工地和其他重要场所,人员闯入报警系统保护危险作业区域的安全,防止未经允许的人员进入。人员闯入报警系统通过实时监测和智能视觉识别,人员闯入报警系统能够减少安全风险,并提高紧急响应能力。未来,我们相信人员闯入报警系统将继续得到创新和应用,为各行各业的安全管理提供更好的保障。
标签:YOLOv7,nl,闯入,报警,grid,人员,self From: https://blog.51cto.com/u_16270964/12108442