首页 > 其他分享 >金属矿山电子封条系统 YOLOv5

金属矿山电子封条系统 YOLOv5

时间:2024-09-25 10:24:27浏览次数:10  
标签:封条 YOLOv5 nl self torch 矿山 grid


金属矿山电子封条系统的主要特点和作用如下:金属矿山电子封条系统通过电子封条的安装位置和追踪技术,金属矿山电子封条系统可以对煤矿进行实时监控,确保安全事件的及时发现和处理。金属矿山电子封条系统识别到运输设备启动运行 或者识别到运输设备运行工作状态下有煤、无煤转换,进行预警分析,并将数据上传到智能监管平台。金属矿山电子封条系统利用智能化视频识别等技术,实时监测分析矿井出入井人员、人数变化及非煤矿山生产作业状态等情况。对于煤矿的安全管理和监管来说,这是非常重要的一步。

YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

金属矿山电子封条系统 YOLOv5_机器学习

随着对煤矿安全管理要求的提升,金属矿山电子封条系统应运而生。该系统是为了加强煤矿安全监测和管理而开发的一项创新解决方案。以煤矿为核心建设对象,涵盖了全国各类煤矿,包括生产建设、停产停建以及正在实施关闭等类型的煤矿。系统将安装在煤矿主副井口、风井口、车辆出入口和调度室等关键位置,以确保煤矿的安全运营。

# 检测类
class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export

    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                y = x[i].sigmoid()
                y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

金属矿山电子封条系统针对车辆出入口的货运车进行识别,当出现货运车时进行预警并进行车牌的抓拍上报,并将报警图片和数据传到智能监管平台。金属矿山电子封条系统针对调度室内人员空岗的行为进行识别,当出现空岗行为时,进行数据上报,把图片和报警数据传到第三方平台。金属矿山电子封条系统支持远程监控功能,金属矿山电子封条系统可以通过网络连接从远处实时监测煤矿的状态。这为管理人员提供了更便捷的方式来了解煤矿的运营情况,做出合理的决策。通过落实该系统,能够加强煤矿的安全管理和监控,保障工作人员的生命安全和煤矿企业的可持续发展。

标签:封条,YOLOv5,nl,self,torch,矿山,grid
From: https://blog.51cto.com/u_16270964/12107585

相关文章

  • 非煤矿山风险监测预警系统 Python
    非煤矿山风险监测预警系统具有以下优势:非煤矿山风险监测预警系统通过在煤矿关键地点安装摄像机等设备利用智能化视频识别技术,能够实时分析人员出入井口的情况,监测矿井人数变化并检测煤矿生产作业状态,在矿井出入口、各作业区域等重要位置进行全方位监测,确保覆盖矿山操作过程中的关键......
  • 工地扬尘监测系统 YOLOv5
    工地扬尘监测识别系统是一种基于视频流的智能图像识别系统,工地扬尘监测系统能够自动对施工监控区域的扬尘、粉尘颗粒进行实时监测识别,实时分析,并及时进行预警。工地扬尘监测系统还提供现场录像查看功能,方便事后管理查询,有效协助管理人员处理,提升了企业信息化管理水平,工地扬尘监测系......
  • YOLOv5:Android手机NCNN部署
    视频链接:YOLOv5:Android手机NCNN部署_哔哩哔哩_bilibili 《YOLOv5:Android手机NCNN部署》课程致力于帮助学生实战YOLOv5目标检测算法在Android手机上的NCNN部署。常心老师将手把手带领大家从0开始搭建YOLOv5+Android+NCNN环境,带领大家排坑、避坑、填坑。本课程将进行环境搭......
  • 传送带上料口缺料识别检测系统 YOLOv5
    传送带上料口缺料识别检测系统利用高清监控摄像头覆盖传送带的上料口,传送带上料口缺料识别检测系统通过AI视觉识别算法对传送带上运输物料的情况进行实时监测。传送带上料口缺料识别检测系统能够准确识别传送带上的堵料、漏料和缺料情况,并根据设定的阈值判断是否异常。传送带上......
  • 电子封条监控系统 YOLOv3
    电子封条监控系统利用电子封条和监控设备相结合,电子封条监控系统利用智能化视频识别等技术,实现对矿井内外的出入人员、人数变化及非煤矿山生产作业状态等情况的实时监测和分析,及时发现非煤矿山异常动态,减少了人为介入的过程,节约了大量的人力和物力资源。电子封条监控系统能够实时监......
  • 智慧矿山数字化工业大数据平台建设方案(52页PPT下载)
    方案介绍:传统矿山面临生产效率低、资源消耗大、安全隐患多、环境污染严重等问题,急需通过数字化转型实现可持续发展。而智慧矿山数字化工业大数据平台建设方案则可以有效的帮助矿业企业构建一个集数据采集、存储、处理、分析及应用于一体的智慧矿山数字化工业大数据平台,实现矿山运营......
  • 【嵌入式linux开发】旭日x3派部署自己训练的yolov5模型(安全帽识别、视频流推理、yolov
    旭日x3派部署自己训练的模型(安全帽识别、视频流推理、yolov5-6.2)windows,框架pytorch,python3.7效果模型训练模型转换1、pt模型文件转onnx2、检查onnx模型3、准备校准数据4、onnx转bin上板视频流推理1、图片推理2、视频流推理效果模型训练进官网可克隆yolov5......
  • Yolov5水果分类识别+pyqt交互式界面
    Yolov5FruitsDetectorYolov5是一种先进的目标检测算法,可以应用于水果分类识别任务。结合PyQT框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述Yolov5水果分类识别和PyQT交互式界面的实现。Yolov5是由Ultralytics公司开......
  • yolov5障碍物识别-雪糕筒识别(代码+教程)
    简介这是一个检测交通锥并识别颜色的项目。我使用yolov5来训练和检测视锥细胞。此外,我使用k均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。数据集和注释我使用了一个自收集的锥体数据集,其中包含303张锥体......
  • YOLOV5 onnx推理 python
      pipinstallonnxcoremltoolsonnx-simplifier 3.使用onnx-simplier简化模型python-monnxsimbest.onnxbest-sim.onnx #coding=utf-8importcv2importnumpyasnpimportonnxruntimeimporttorchimporttorchvisionimporttimeimportrandomfromutil......