首页 > 其他分享 >Yolov5水果分类识别+pyqt交互式界面

Yolov5水果分类识别+pyqt交互式界面

时间:2024-09-16 19:52:46浏览次数:12  
标签:__ Yolov5 show self pyqt fileName 交互式 def

Yolov5 Fruits Detector

  • Yolov5 是一种先进的目标检测算法,可以应用于水果分类识别任务。结合 PyQT
    框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT
    交互式界面的实现。
  • Yolov5 是由 Ultralytics
    公司开发的一种基于深度学习的目标检测算法,它采用了一种称为单阶段目标检测的方法,具有高准确率和实时性的特点。在水果分类识别任务中,Yolov5
    可以检测图像中的水果,并将其分类为不同的类别,例如苹果、香蕉、橙子等。
  • 为了实现 Yolov5 水果分类识别的交互式界面,可以使用 PyQT 框架进行开发。PyQT 是一个功能强大且易于使用的 Python
    GUI 开发工具包,它提供了丰富的界面组件和布局选项,可以轻松创建用户友好的界面。
  • 在界面设计方面,可以使用 PyQT 创建一个包含上传图片按钮和显示分类结果的窗口。当用户点击上传图片按钮时,可以调用 Yolov5
    模型对上传的图片进行识别,并将分类结果显示在界面上。同时,还可以添加其他功能,如清除界面、保存结果等。

image56

要求

  • 可以使用 Linux 或者 Windows。我们推荐使用 Linux 以获得更好的性能。
  • 需要安装 Python 3.6+ 和 PyTorch 1.7+。

安装

运行以下命令来安装依赖项:

pip install -r requirements.txt
  • 下载模型,请使用此链接:https://drive.google.com/file/d/1W6qZeutnqnp3YX9w4iYgR44xsoi_64ff/view?usp=sharing
  • 将下载的文件放置在 weights 目录下

代码

运行此部分检测ui界面代码

import sys
import os

from PySide6.QtWidgets import QApplication, QWidget, QFileDialog
from PySide6.QtCore import QFile
from PySide6.QtUiTools import QUiLoader
from PySide6.QtGui import QPixmap, QImage
from PySide6.QtCore import QThread, Signal, QDir
import cv2


def convertCVImage2QtImage(cv_img):
    cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
    height, width, channel = cv_img.shape
    bytesPerLine = 3 * width
    qimg = QImage(cv_img.data, width, height, bytesPerLine, QImage.Format_RGB888)
    return QPixmap.fromImage(qimg)


class ProcessImage(QThread):
    signal_show_frame = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName

        from detector import Detector
        self.detector = Detector()

    def run(self):
        self.video = cv2.VideoCapture(self.fileName)
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.frame = self.detector.detect(self.frame)
            self.signal_show_frame.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class show(QThread):
    signal_show_image = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName
        self.video=cv2.VideoCapture(self.fileName)

    def run(self): 
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.signal_show_image.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class MainWindow(QWidget):
    def __init__(self):
        super(MainWindow, self).__init__()
        loader = QUiLoader()
        self.ui = loader.load("ui/form.ui")
        
        self.ui.btn_browse.clicked.connect(self.getFile)
        self.ui.btn_start.clicked.connect(self.predict)

        self.ui.show()

    def getFile(self):
        self.fileName = QFileDialog.getOpenFileName(self,'Single File','C:\'','*.jpg *.mp4 *.jpeg *.png *.avi')[0]
        self.ui.txt_address.setText(str(self.fileName))
        self.show=show(self.fileName)
        self.show.signal_show_image.connect(self.show_input)
        self.show.start()
        
        
    def predict(self):
        self.process_image = ProcessImage(self.fileName)
        self.process_image.signal_show_frame.connect(self.show_output)
        self.process_image.start()

    def show_input(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_input.setPixmap(pixmap)

    def show_output(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_output.setPixmap(pixmap)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    widget = MainWindow()
    sys.exit(app.exec())

运行界面

要对图像或视频进行推断,请运行以下命令:

python main.py 

数据集:

  • 数据集可以在此链接中找到https://t.ly/NZWj
  • 在 Yolov5 水果分类识别的实现过程中,需要使用训练好的 Yolov5 模型来进行目标检测和分类。可以使用已经预训练好的 Yolov5 模型,也可以自己训练一个适用于水果分类的模型。

总结

总结起来,Yolov5 水果分类识别结合 PyQT 交互式界面可以提供一个方便用户上传图片并获取水果分类结果的工具。Yolov5 算法具有高准确率和实时性,在水果分类任务中表现出色。PyQT 框架提供了丰富的界面组件和布局选项,使得界面开发更加简单。通过 Yolov5 水果分类识别和 PyQT 交互式界面的结合,用户可以轻松地进行水果分类识别,并获得准确的分类结果。
在这里插入图片描述

标签:__,Yolov5,show,self,pyqt,fileName,交互式,def
From: https://blog.csdn.net/cv_2025/article/details/142218520

相关文章

  • yolov5障碍物识别-雪糕筒识别(代码+教程)
    简介这是一个检测交通锥并识别颜色的项目。我使用yolov5来训练和检测视锥细胞。此外,我使用k均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。数据集和注释我使用了一个自收集的锥体数据集,其中包含303张锥体......
  • 从零开始:使用Dash创建功能丰富的交互式Web应用程序
    在数据科学和可视化领域,交互式Web应用程序是与用户交互和展示数据的强大工具。Dash是一个用Python构建交互式Web应用程序的开源框架,它结合了Flask、React和Plotly等技术,让开发者能够快速创建功能丰富的数据可视化应用。本文将介绍如何使用Dash来构建交互式Web应用程序,并提供代码示......
  • PyQt5 使用 QFrame 绘制聊天(三角)气泡,并显示文字
    PyQt5使用QFrame绘制聊天(三角)气泡,并显示文字在PyQt5中,当需要想得到一个自定义的聊天气泡时,可以使用QPainter进行自定义绘制代码如下使用QPainter进行自定义绘制#!/usr/bin/envpython3#-*-coding:UTF-8-*-"""@File:test_QFrame.py@Author:......
  • YOLOV5 onnx推理 python
      pipinstallonnxcoremltoolsonnx-simplifier 3.使用onnx-simplier简化模型python-monnxsimbest.onnxbest-sim.onnx #coding=utf-8importcv2importnumpyasnpimportonnxruntimeimporttorchimporttorchvisionimporttimeimportrandomfromutil......
  • PyQt5--打造精美、功能强大的桌面应用程序
    ui文件转换为python文件方法一:直接使用命令行转换,demo.ui为保存的ui名,demo.py为ui转换为python的文件。1python-mPyQt5.uic.pyuicdemo.ui-odemo.py QLabel案例:使用信号以下是QLabel控件的常用信号:linkActivated:当控件中包含超链接时,用户单击链接时触发此信号。......
  • 目标检测与比对,使用yolov5s跑数据集构建模型
    1.1数据集下载我使用的是下面的数据集,有需要可去以下链接下载trianA数据集下载链接:https://pan.baidu.com/s/1zj3MqZEHKHpFACs95Ov4gQ?pwd=ma1ptrianB数据集下载链接:https://pan.baidu.com/s/1whg_-jLfbUnfpZkKjvdziQ?pwd=yg54 1.2yolov5s下载(1)官网......
  • 【看来我要63岁才能退休了】超简单!低耦合!一步在自己PyQt5、PySide6界面中加入文件资源
    【......
  • 图像检测【YOLOv5】——深度学习
    Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以在不同环境之间切换,是深度学习的必备平台。)一.Anaconda安装配置.1.首先进入官网:https://repo.anaconda.com,选择ViewAllIns......
  • yolov5单目测距+速度测量+目标跟踪
    要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像......
  • Pyqt5 实现计算器
    计算器是练习pyqt5的好项目界面设计简单 代码如下:importsysfromPyQt5.QtWidgetsimport*fromPyQt5.QtCoreimportQtclassWindow(QWidget):def__init__(self):super().__init__()self.display=Noneself.buttons=None......